60 resultados para Energy methods
Resumo:
OBJECTIVE: Reliable data about the nutrient intake of elderly noninstitutionalized women in Switzerland is lacking. The aim of this study was to assess the energy and nutrient intake in this specific population. SUBJECTS: The 401 subjects were randomly selected women of mean age of 80.4 years (range 75-87) recruited from the Swiss SEMOF (Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture Risk) cohort study. A validated food frequency questionnaire (FFQ) was submitted to the 401 subjects to assess dietary intake. RESULTS: The FFQ showed a mean daily energy intake of 1544 kcal (+/-447.7). Protein intake was 65.2 g (+/-19.9), that is 1.03 g kg(-1) body weight per day. The mean daily intake for energy, fat, carbohydrate, calcium, magnesium, vitamin C, D and E were below the RNI. However, protein, phosphorus, potassium, iron and vitamin B6 were above the RNI. CONCLUSION: The mean nutrient intake of these free living Swiss elderly women was low compared with standards. Energy dense foods rich in carbohydrate, magnesium, calcium, vitamin D and E as well as regular sunshine exposure is recommended in order to optimise dietary intake.
Resumo:
BACKGROUND: The association between smoking and total energy expenditure (TEE) is still controversial. We examined this association in a multi-country study where TEE was measured in a subset of participants by the doubly labeled water (DLW) method, the gold standard for this measurement. METHODS: This study includes 236 participants from five different African origin populations who underwent DLW measurements and had complete data on the main covariates of interest. Self-reported smoking status was categorized as either light (<7 cig/day) or high (≥7 cig/day). Lean body mass was assessed by deuterium dilution and physical activity (PA) by accelerometry. RESULTS: The prevalence of smoking was 55% in men and 16% in women with a median of 6.5 cigarettes/day. There was a trend toward lower BMI in smokers than non-smokers (not statistically significant). TEE was strongly correlated with fat-free mass (men: 0.70; women: 0.79) and with body weight (0.59 in both sexes). Using linear regression and adjusting for body weight, study site, age, PA, alcohol intake and occupation, TEE was larger in high smokers than in never smokers among men (difference of 298 kcal/day, p = 0.045) but not among women (162 kcal/day, p = 0.170). The association became slightly weaker in men (254 kcal/day, p = 0.058) and disappeared in women (-76 kcal/day, p = 0.380) when adjusting for fat-free mass instead of body weight. CONCLUSION: There was an association between smoking and TEE among men. However, the lack of an association among women, which may be partly related to the small number of smoking women, also suggests a role of unaccounted confounding factors.
Resumo:
Introduction: Growth is a central process in paediatrics. Weight and height evaluation are therefore routine exams for every child but in some situation, particularly inflammatory bowel disease (IBD), a wider evaluation of nutritional status needs to be performed. Objectives: To assess the accuracy of bio-impedance analysis (BIA) compared to the gold standard dual energy X-ray absorptiometry (DEXA) in estimating percentage body fat (fat mass; FM) and lean body mass (fat free mass; FFM) in children with inflammatory bowel disease (IBD). To compare FM and FFM levels between patients with IBD and healthy controls. Methods: Twenty-nine healthy controls (12 females; mean age: 12.7 ± 1.9 years) and 21 patients (11 females; 14.3 ± 1.3 years) were recruited from August 2011 to October 2012 at our institution. BIA was performed in all children and DEXA in patients only. Concordance between BIA and DEXA was assessed using Lin's concordance correlation and the Bland-Altman method. Between-group comparisons were made using analysis of variance adjusting for age. Results: BIA-derived FM% showed a good concordance with DEXA-derived values, while BIA-derived FFM% tended to be slightly higher than DEXA-derived values (table). No differences were found between patients and controls regarding body mass index (mean ± SD: 19.3 ± 3.3 vs. 20.1 ± 2.8 kg/m2, respectively; age-adjusted P = 0.08) and FM% (boys: 25.3 ± 10.2 vs. 22.6 ± 7.1%, for patients and controls, respectively; P = 0.20; girls: 28.2 ± 5.7 vs. 26.4 ± 7.7%; P = 0.91). Also, no differences were found regarding FFM% in boys (74.9 ± 10.2 vs. 77.4 ± 7.1%; P = 0.22) and girls (71.8 ± 5.6 vs. 73.5 ± 7.7%; P = 0.85). Conclusion: BIA adequately assesses body composition (FM%) in children with IBD and could advantageously replace DEXA, which is more expensive and less available. No differences in body composition were found between children with IBD and healthy controls.
Resumo:
PURPOSE: Multi-hour ski mountaineering energy balance may be negative and intake below recommendations. METHODS: Athletes on the 'Patrouille des Glaciers' racecourses (17 on course Z, 27 km, +2,113 m; 11 on course A, 26 km, +1,881 m) volunteered. Pre-race measurements included body mass, stature, VO2max, and heart rate (HR) vs VO2 at simulated altitude; race measurements HR, altitude, incline, location, and food and drink intake (A). Energy expenditure (EE) was calculated from altitude corrected HR derived VO2. RESULTS: Race time was 5 h 7 min ± 44 min (mean ± SD, Z) and 5 h 51 min ± 53 min (A). Subjects spent 19.2 ± 3.2 MJ (Z), respectively, 22.6 ± 2.9 MJ (A) during the race. Energy deficit was -15.5 ± 3.9 MJ (A); intake covered 20 ± 7 % (A). Overall energy cost of locomotion (EC) was 9.9 ± 1.3 J m(-1) kg(-1) (Z), 8.0 ± 1.0 J m(-1) kg(-1) (A). Uphill EC was 11.7 ± 1 J m(-1) kg(-1) (Z, 13 % slope) and 15.7 ± 2.3 J m(-1) kg(-1) (A, 19 % slope). Race A subjects lost -1.5 ± 1.1 kg, indicating near euhydration. Age, body mass, gear mass, VO2max and EC were significantly correlated with performance; energy deficit was not. CONCLUSIONS: Energy expenditure and energy deficit of a multi-hour ski mountaineering race are very high and energy intake is below recommendations.
Resumo:
Free-living energy expenditure (EE) was assessed in 37 young pregnant Gambian women at the 12th (n = 11, 53.5 +/- 1.7 kg), 24th (n = 14, 54.7 +/- 2.1 kg), and 36th (n = 12, 65.0 +/- 2.6 kg) wk of pregnancy and was compared with nonpregnant nonlactating (NPNL) control women (n = 12, 50.3 +/- 1.6 kg). The following two methods were used to assess EE: 1) the heart rate (HR) method using individual regression lines (HR vs EE) established at different activity levels in a respiration chamber and 2) the doubly labeled water (2H2(18)O) method in a subgroup of 25 pregnant and 7 control women. With the HR method the EE during the agricultural rainy season was found to be 2,408 +/- 87, 2,293 +/- 122, and 2,782 +/- 130 kcal/day at 12, 24, and 36 wk of gestation and were not significantly different from the control group (2,502 +/- 133 kcal/day). These findings were confirmed by the 2H2(18)O measurements, which failed to show any effect of pregnancy on EE. Expressed per unit body weight, the free-living EE was found to be lower (P less than 0.01 with 2H2(18)O method) at 36 wk of gestation than in the NPNL group. It is concluded that, in these Gambian women, energy-sparing mechanisms that contribute to meet the additional energy stress of gestation are operating during pregnancy (e.g., diminished spontaneous physical activity).
Resumo:
BACKGROUND: Controlled transcranial stimulation of the brain is part of clinical treatment strategies in neuropsychiatric diseases such as depression, stroke, or Parkinson's disease. Manipulating brain activity by transcranial stimulation, however, inevitably influences other control centers of various neuronal and neurohormonal feedback loops and therefore may concomitantly affect systemic metabolic regulation. Because hypothalamic adenosine triphosphate-sensitive potassium channels, which function as local energy sensors, are centrally involved in the regulation of glucose homeostasis, we tested whether transcranial direct current stimulation (tDCS) causes an excitation-induced transient neuronal energy depletion and thus influences systemic glucose homeostasis and related neuroendocrine mediators.METHODS: In a crossover design testing 15 healthy male volunteers, we increased neuronal excitation by anodal tDCS versus sham and examined cerebral energy consumption with (31)phosphorus magnetic resonance spectroscopy. Systemic glucose uptake was determined by euglycemic-hyperinsulinemic glucose clamp, and neurohormonal measurements comprised the parameters of the stress systems.RESULTS: We found that anodic tDCS-induced neuronal excitation causes an energetic depletion, as quantified by (31)phosphorus magnetic resonance spectroscopy. Moreover, tDCS-induced cerebral energy consumption promotes systemic glucose tolerance in a standardized euglycemic-hyperinsulinemic glucose clamp procedure and reduces neurohormonal stress axes activity.CONCLUSIONS: Our data demonstrate that transcranial brain stimulation not only evokes alterations in local neuronal processes but also clearly influences downstream metabolic systems regulated by the brain. The beneficial effects of tDCS on metabolic features may thus qualify brain stimulation as a promising nonpharmacologic therapy option for drug-induced or comorbid metabolic disturbances in various neuropsychiatric diseases.
Resumo:
OBJECTIVE: To evaluate if heroin and cocaine can be distinguished using dual-energy CT. MATERIALS AND METHODS: Twenty samples of heroin and cocaine at different concentrations and standardized compression (SC) were scanned in dual-energy mode on a newest generation Dual Energy 64-row MDCT scanner. CT number, spectral graphs, and dual-energy index (DEI) were evaluated. Results were prospectively tested on six original samples from a body packer. Wilcoxon's test was used for statistical evaluation. RESULTS: Values are given as median and range. Under SC, the CT number of cocaine samples (-29.87 Hounsfield unit (HU) [-125.85; 16.16 HU]) was higher than the CT number of heroin samples (-184.37 HU [-199.81; -159.25 HU]; p < 0.01). Slope of spectral curves for cocaine was -2.36 HU/keV [-7.15; -0.67 HU/keV], and for heroin, 1.75 HU/keV [1.28; 2.5 HU/keV] (p < 0.01). DEI was 0.0352 [0.0081; 0.0528] for cocaine and significantly higher than for heroin samples (-0.0127 [-0.0097; -0.0159]; p < 0.001). While CT number was inconclusive, all six original packs were correctly classified after evaluation of the spectral curve and DEI. In contrast to the CT number, slope of the spectral curve and DEI were independent of concentration and compression. CONCLUSION: The slope of the spectral curve and the DEI from dual-energy CT data can be used to distinguish heroin and cocaine in vitro; these results are independent of compression and concentration in the measured range.
Resumo:
OBJECTIVES: To compare daily energy expenditure between RA patients and matched controls, and to explore the relationship between daily energy expenditure or sedentariness and disease-related scores. METHODS: One hundred and ten patients with RA and 440 age- and sex-matched controls were included in this study. Energy expenditure was assessed using the validated physical activity (PA) frequency questionnaire. Disease-related scores included disease activity (DAS-28), functional status (HAQ), pain visual analogue scale (VAS) and fatigue VAS. Total energy expenditure (TEE) and the amount of energy spent in low- (TEE-low), moderate- (TEE-mod) and high-intensity (TEE-high) PAs were calculated. Sedentariness was defined as expending <10% of TEE in TEE-mod or TEE-high activities. Between-group comparisons were computed using conditional logistic regression. The effect of disease-related scores on TEE was investigated using linear regression. RESULTS: TEE was significantly lower for RA patients compared with controls [2392 kcal/day (95% CI 2295, 2490) and 2494 kcal/day (2446, 2543), respectively, P = 0.003]. A significant difference was found between groups in TEE-mod (P = 0.015), but not TEE-low (P = 0.242) and TEE-high (P = 0.146). All disease-related scores were significantly poorer in sedentary compared with active patients. TEE was inversely associated with age (P < 0.001), DAS-28 (P = 0.032) and fatigue VAS (P = 0.029), but not with HAQ and pain VAS. CONCLUSION: Daily energy expenditure is significantly lower in RA patients compared with matched controls, mainly due to less moderate-intensity PAs performed. Disease activity and fatigue are important contributing factors. These points need to be addressed if promoting PA in RA patients is a health goal. Trial registration. ClinicalTrials.gov, http://clinicaltrials.gov, NCT01228812.
Resumo:
Purpose: The accurate estimation of total energy expenditure (TEE) is essential to allow the provision of nutritional requirements in patients treated by maintenance hemodialysis (MHD). The measurement of TEE and resting energy expenditure (REE) by direct or indirect calorimetry and doubly labeled water are complicated, timeconsuming and cumbersome in this population. Recently, a new system called SenseWear® armband (SWA) was developed to assess TEE, physical activity and REE. This device works by measurements of body acceleration in two axes, heat production and steps counts. REE measured by indirect calorimetry and SWA are well correlated. The aim of this study was to determine TEE, physical activity and REE on patients on MHD using this new device. Methods and materials: Daily TEE, REE, step count, activity time, intensity of activity and lying time were determined for 7 consecutive days in unselected stable patients on MHD and sex, age and weightmatched healthy controls (HC). Patients with malnutrition, cancer, use of immunosuppressive drugs, hypoalbumemia <35 g/L and those hospitalized in the last 3 months, were excluded. For MHD patients, separate analyses were conducted in dialysis and non-dialysis days. Relevant parameters known to affect REE, such as BMI, albumin, pre-albumin, hemoglobin, Kt/V, CRP, bicarbonate, PTH, TSH, were recorded. Results: Thirty patients on MHD and 30 HC were included. In MHD patients, there were 20 men and 10 women. Age was 60,13 years ± 14.97 (mean ± SD), BMI was 25.77 kg/m² ± 4.73 and body weight was 74.65 kg ± 16.16. There were no significant differences between the two groups. TEE was lower in MHD patients compared to HC (28.79 ± 5.51 SD versus 32.91 ± 5.75 SD kcal/kg/day; p <0.01). Activity time was significantly lower in patients on MHD (101.3 ± 12.6SD versus 50.7 ± 9.4 SD min; p = 0.0021). Energy expenditure during the time of activity was significantly lower in MHD patients. MHD patients walked 4543 ± 643 SD vs 8537 ± 744 SD steps per day (p <0.0001). Age was negatively correlated with TEE (r = -0.70) and intensity of activity (r = -0.61) in HC, but not in patients on MHD. TEE showed no difference between dialysis and non-dialysis days (29.92 ± 2.03 SD versus 28.44 ± 1.90 SD kcal/kg/day; p = NS), reflecting a lack of difference in activity (number of steps, time of physical activity) and REE. This finding was observed in MHD patients both older and younger than 60 years. However, age stratification appeared to have an influence on TEE, regardless of dialysis day, (29.92 ± 2.07 SD kcal/kg/day for <60 years-old versus 27.41 ± 1.04 SD kcal/kg/day for ≥60 years old), although failing to reach statistical significance. Conclusion: Using SWA, we have shown that stable patients on MHD have a lower TEE than matched HC. On average, a TEE of 28.79 kcal/kg/day, partially affected by age, was measured. This finding gives support to the clinical impression that it is difficult and probably unnecessary to provide an energy amount of 30-35 kcal/kg/day, as proposed by international guidelines for this population. In addition, we documented for the first time that MHD patients exert a reduced physical activity as compared to HC. There were surprisingly no differences in TEE, REE and physical activity parameters between dialysis and non-dialysis days. This observation might be due to the fact that patients on MHD produce a physical effort to reach the dialysis centre. Age per se did not influence physical activity in MHD patients, contrary to HC, reflecting the impact of co-morbidities on physical activity in this group of patients.
Resumo:
Assessing the total energy expenditure (TEE) and the levels of physical activity in free-living conditions with non-invasive techniques remains a challenge. The purpose of the present study was to investigate the accuracy of a new uniaxial accelerometer for assessing TEE and physical-activity-related energy expenditure (PAEE) over a 24 h period in a respiratory chamber, and to establish activity levels based on the accelerometry ranges corresponding to the operationally defined metabolic equivalent (MET) categories. In study 1, measurement of the 24 h energy expenditure of seventy-nine Japanese subjects (40 (SD 12) years old) was performed in a large respiratory chamber. During the measurements, the subjects wore a uniaxial accelerometer (Lifecorder; Suzuken Co. Ltd, Nagoya, Japan) on their belt. Two moderate walking exercises of 30 min each were performed on a horizontal treadmill. In study 2, ten male subjects walked at six different speeds and ran at three different speeds on a treadmill for 4 min, with the same accelerometer. O2 consumption was measured during the last minute of each stage and was expressed in MET. The measured TEE was 8447 (SD 1337) kJ/d. The accelerometer significantly underestimated TEE and PAEE (91.9 (SD 5.4) and 92.7 (SD 17.8) % chamber value respectively); however, there was a significant correlation between the two values (r 0.928 and 0.564 respectively; P<0.001). There was a strong correlation between the activity levels and the measured MET while walking (r(2) 0.93; P<0.001). Although TEE and PAEE were systematically underestimated during the 24 h period, the accelerometer assessed energy expenditure well during both the exercise period and the non-structured activities. Individual calibration factors may help to improve the accuracy of TEE estimation, but the average calibration factor for the group is probably sufficient for epidemiological research. This method is also important for assessing the diurnal profile of physical activity.
Resumo:
BACKGROUND: This study validates the use of phycoerythrin (PE) and allophycocyanin (APC) for fluorescence energy transfer (FRET) analyzed by flow cytometry. METHODS: FRET was detected when a pair of antibody conjugates directed against two noncompetitive epitopes on the same CD8alpha chain was used. FRET was also detected between antibody conjugate pairs specific for the two chains of the heterodimeric alpha (4)beta(1) integrin. Similarly, the association of T-cell receptor (TCR) with a soluble antigen ligand was detected by FRET when anti-TCR antibody and MHC class I/peptide complexes (<<tetramers>>) were used. RESULTS: FRET efficiency was always less than 10%, probably because of steric effects associated with the size and structure of PE and APC. Some suggestions are given to take into account this and other effects (e.g., donor and acceptor concentrations) for a better interpretation of FRET results obtained with this pair of fluorochromes. CONCLUSIONS: We conclude that FRET assays can be carried out easily with commercially available antibodies and flow cytometers to study arrays of multimolecular complexes.
Resumo:
The flow of two immiscible fluids through a porous medium depends on the complex interplay between gravity, capillarity, and viscous forces. The interaction between these forces and the geometry of the medium gives rise to a variety of complex flow regimes that are difficult to describe using continuum models. Although a number of pore-scale models have been employed, a careful investigation of the macroscopic effects of pore-scale processes requires methods based on conservation principles in order to reduce the number of modeling assumptions. In this work we perform direct numerical simulations of drainage by solving Navier-Stokes equations in the pore space and employing the Volume Of Fluid (VOF) method to track the evolution of the fluid-fluid interface. After demonstrating that the method is able to deal with large viscosity contrasts and model the transition from stable flow to viscous fingering, we focus on the macroscopic capillary pressure and we compare different definitions of this quantity under quasi-static and dynamic conditions. We show that the difference between the intrinsic phase-average pressures, which is commonly used as definition of Darcy-scale capillary pressure, is subject to several limitations and it is not accurate in presence of viscous effects or trapping. In contrast, a definition based on the variation of the total surface energy provides an accurate estimate of the macroscopic capillary pressure. This definition, which links the capillary pressure to its physical origin, allows a better separation of viscous effects and does not depend on the presence of trapped fluid clusters.
Resumo:
The concept of energy gap(s) is useful for understanding the consequence of a small daily, weekly, or monthly positive energy balance and the inconspicuous shift in weight gain ultimately leading to overweight and obesity. Energy gap is a dynamic concept: an initial positive energy gap incurred via an increase in energy intake (or a decrease in physical activity) is not constant, may fade out with time if the initial conditions are maintained, and depends on the 'efficiency' with which the readjustment of the energy imbalance gap occurs with time. The metabolic response to an energy imbalance gap and the magnitude of the energy gap(s) can be estimated by at least two methods, i.e. i) assessment by longitudinal overfeeding studies, imposing (by design) an initial positive energy imbalance gap; ii) retrospective assessment based on epidemiological surveys, whereby the accumulated endogenous energy storage per unit of time is calculated from the change in body weight and body composition. In order to illustrate the difficulty of accurately assessing an energy gap we have used, as an illustrative example, a recent epidemiological study which tracked changes in total energy intake (estimated by gross food availability) and body weight over 3 decades in the US, combined with total energy expenditure prediction from body weight using doubly labelled water data. At the population level, the study attempted to assess the cause of the energy gap purported to be entirely due to increased food intake. Based on an estimate of change in energy intake judged to be more reliable (i.e. in the same study population) and together with calculations of simple energetic indices, our analysis suggests that conclusions about the fundamental causes of obesity development in a population (excess intake vs. low physical activity or both) is clouded by a high level of uncertainty.
Resumo:
BACKGROUND/AIM: We have reported that neonatal treatment with monosodium L-glutamate (MSG), which causes damage to the arcuate nucleus, leads to severe hyperleptinemia and reduced adrenal leptin receptor (ob-Rb) expression in adulthood. As a result, rats given MSG neonatally display corticoadrenal leptin-resistance, a defect that is overridden by normalization of corticoadrenal hyperfunction. The aim of the present study was to determine whether negative energy conditions could correct corticoadrenal cell dysfunction in rats given MSG neonatally. METHODS: Normal (CTR) and MSG-treated female rats were subjected to food removal for 1-5 days, or prolonged (24-61 days) food restriction (FR). Plasma levels of several biomarkers and in vitro corticoadrenal function were evaluated following starvation or FR. RESULTS: Fasting for 1-5 days reduced plasma leptin levels in CTR and MSG rats, compared to levels in the respective groups fed ad libitum(p < 0.05), but adrenal leptin-resistance was unchanged. With prolonged FR, isolated adrenal cells from MSG rats became sensitive to leptin, which lowered ACTH-induced glucocorticoid release. This restoration of leptin response was associated with normalization of adrenal ob-Rb gene expression. CONCLUSION: Dietary restriction in some leptin-resistant obese phenotypes may normalize adrenocortical function.