42 resultados para Energy Engineering and Power Technology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In six young obese women (mean weight 85 +/- 3 kg) with a childhood history of obesity, and in six young nonobese women (mean weight 55 +/- 2 kg), the energy expenditure was measured during 24 h in a respiratory chamber with a maintenance energy intake. The next day, the thermogenic response to a mixed meal was investigated by using an open circuit indirect calorimetry hood system. In addition, five of the same obese women were similarly studied after a mean weight loss of 12.1 kg (14% of initial body weight) consecutive to an 11-wk hypocaloric diet (protein-supplemented modified fast). Expressed in absolute terms, the total 24 h and basal energy expenditures were found to be significantly greater in the obese (2208 +/- 105 and 1661 +/- 56 kcal/24 h, respectively) than in the controls (1746 +/- 61 and 1230 +/- 40 kcal/24 h, respectively). After weight loss, both the total 24-h and the basal energy expenditures were significantly reduced (2009 +/- 99 kcal/24 h and 1423 +/- 43 kcal/24 h respectively), but both values were still greater than that of the control subjects. The thermogenic response to the mixed meal (a liquid diet containing 17, 54, and 29% as protein, carbohydrate, and lipid calories, respectively, and an energy level determined to cover 60% of the basal energy expenditure computed for 24 h) was found to be significantly reduced in the obese as compared to controls (ie, 7.6 +/- 0.4% versus 9.5 +/- 0.4% of the energy content of the load, respectively, p less than 0.025). After weight loss, the postprandial thermogenesis of the obese was still markedly reduced (ie, 6.2 +/- 0.8%). Both before and after weight loss, the relative increase in diurnal urinary norepinephrine excretion was found to be lower in the obese than in controls, when compared to the nocturnal values. These results show that the greater 24 h energy expenditure of obese women is entirely due to their higher basal metabolic rate. The lower thermogenic response to the meal in the obese supports the concept of a thermogenic defect which can favor energy gain; furthermore, the unchanged response after weight loss in the obese suggests that the thermogenic defect may be a cause rather than a consequence of obesity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We characterize the value function of maximizing the total discounted utility of dividend payments for a compound Poisson insurance risk model when strictly positive transaction costs are included, leading to an impulse control problem. We illustrate that well known simple strategies can be optimal in the case of exponential claim amounts. Finally we develop a numerical procedure to deal with general claim amount distributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The accurate estimation of total energy expenditure (TEE) is essential to allow the provision of nutritional requirements in patients treated by maintenance hemodialysis (MHD). The measurement of TEE and resting energy expenditure (REE) by direct or indirect calorimetry and doubly labeled water are complicated, timeconsuming and cumbersome in this population. Recently, a new system called SenseWear® armband (SWA) was developed to assess TEE, physical activity and REE. This device works by measurements of body acceleration in two axes, heat production and steps counts. REE measured by indirect calorimetry and SWA are well correlated. The aim of this study was to determine TEE, physical activity and REE on patients on MHD using this new device. Methods and materials: Daily TEE, REE, step count, activity time, intensity of activity and lying time were determined for 7 consecutive days in unselected stable patients on MHD and sex, age and weightmatched healthy controls (HC). Patients with malnutrition, cancer, use of immunosuppressive drugs, hypoalbumemia <35 g/L and those hospitalized in the last 3 months, were excluded. For MHD patients, separate analyses were conducted in dialysis and non-dialysis days. Relevant parameters known to affect REE, such as BMI, albumin, pre-albumin, hemoglobin, Kt/V, CRP, bicarbonate, PTH, TSH, were recorded. Results: Thirty patients on MHD and 30 HC were included. In MHD patients, there were 20 men and 10 women. Age was 60,13 years ± 14.97 (mean ± SD), BMI was 25.77 kg/m² ± 4.73 and body weight was 74.65 kg ± 16.16. There were no significant differences between the two groups. TEE was lower in MHD patients compared to HC (28.79 ± 5.51 SD versus 32.91 ± 5.75 SD kcal/kg/day; p <0.01). Activity time was significantly lower in patients on MHD (101.3 ± 12.6SD versus 50.7 ± 9.4 SD min; p = 0.0021). Energy expenditure during the time of activity was significantly lower in MHD patients. MHD patients walked 4543 ± 643 SD vs 8537 ± 744 SD steps per day (p <0.0001). Age was negatively correlated with TEE (r = -0.70) and intensity of activity (r = -0.61) in HC, but not in patients on MHD. TEE showed no difference between dialysis and non-dialysis days (29.92 ± 2.03 SD versus 28.44 ± 1.90 SD kcal/kg/day; p = NS), reflecting a lack of difference in activity (number of steps, time of physical activity) and REE. This finding was observed in MHD patients both older and younger than 60 years. However, age stratification appeared to have an influence on TEE, regardless of dialysis day, (29.92 ± 2.07 SD kcal/kg/day for <60 years-old versus 27.41 ± 1.04 SD kcal/kg/day for ≥60 years old), although failing to reach statistical significance. Conclusion: Using SWA, we have shown that stable patients on MHD have a lower TEE than matched HC. On average, a TEE of 28.79 kcal/kg/day, partially affected by age, was measured. This finding gives support to the clinical impression that it is difficult and probably unnecessary to provide an energy amount of 30-35 kcal/kg/day, as proposed by international guidelines for this population. In addition, we documented for the first time that MHD patients exert a reduced physical activity as compared to HC. There were surprisingly no differences in TEE, REE and physical activity parameters between dialysis and non-dialysis days. This observation might be due to the fact that patients on MHD produce a physical effort to reach the dialysis centre. Age per se did not influence physical activity in MHD patients, contrary to HC, reflecting the impact of co-morbidities on physical activity in this group of patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Twenty-four-hour energy expenditure (24-EE), resting metabolic rate (RMR) and body composition were determined in 30 subjects from three groups; control (103 +/- 2% ideal body weight, n = 10), moderately obese (129 +/- 1% ideal body weight, n = 6), and obese (170 +/- 5% ideal body weight, n = 14) individuals. Twenty-four EE was measured in a comfortable airtight respiration chamber. When expressed as absolute values, both RMR and 24-EE were significantly increased in obese subjects when compared to normal weight subjects. The RMR was 7592 +/- 351 kJ/day in the obese, 6652 +/- 242 kJ/day in the moderately obese, and 6118 +/- 405 kJ/day in the controls. Mean 24-EE values were 10043 +/- 363, 9599 +/- 277, and 8439 +/- 432 kJ/day in the obese, moderately obese, and controls, respectively. The larger energy expenditure in the obese over 24 h was mainly due to a greater VO2 during the daylight hours. However, 92% of the larger 24-EE in the obese, compared to the control group, was accounted for by the higher RMR and only 8% by other factors such as the increased cost of moving the extra weight of the obese. The higher RMR and 24-EE in the obese was best related to the increased fat free mass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In dynamic models of energy allocation, assimilated energy is allocated to reproduction, somatic growth, maintenance or storage, and the allocation pattern can change with age. The expected evolutionary outcome is an optimal allocation pattern, but this depends on the environment experienced during the evolutionary process and on the fitness costs and benefits incurred by allocating resources in different ways. Here we review existing treatments which encompass some of the possibilities as regards constant or variable environments and their predictability or unpredictability, and the ways in which production rates and mortality rates depend on body size and composition and age and on the pattern of energy allocation. The optimal policy is to allocate resources where selection pressures are highest, and simultaneous allocation to several body subsystems and reproduction can be optimal if these pressures are equal. This may explain balanced growth commonly observed during ontogeny. Growth ceases at maturity in many models; factors favouring growth after maturity include non-linear trade-offs, variable season length, and production and mortality rates both increasing (or decreasing) functions of body size. We cannot yet say whether these are sufficient to account for the many known cases of growth after maturity and not all reasonable models have yet been explored. Factors favouring storage are also reviewed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Critically ill patients are at high risk of malnutrition. Insufficient nutritional support still remains a widespread problem despite guidelines. The aim of this study was to measure the clinical impact of a two-step interdisciplinary quality nutrition program. DESIGN: Prospective interventional study over three periods (A, baseline; B and C, intervention periods). SETTING: Mixed intensive care unit within a university hospital. PATIENTS: Five hundred seventy-two patients (age 59 ± 17 yrs) requiring >72 hrs of intensive care unit treatment. INTERVENTION: Two-step quality program: 1) bottom-up implementation of feeding guideline; and 2) additional presence of an intensive care unit dietitian. The nutrition protocol was based on the European guidelines. MEASUREMENTS AND MAIN RESULTS: Anthropometric data, intensive care unit severity scores, energy delivery, and cumulated energy balance (daily, day 7, and discharge), feeding route (enteral, parenteral, combined, none-oral), length of intensive care unit and hospital stay, and mortality were collected. Altogether 5800 intensive care unit days were analyzed. Patients in period A were healthier with lower Simplified Acute Physiologic Scale and proportion of "rapidly fatal" McCabe scores. Energy delivery and balance increased gradually: impact was particularly marked on cumulated energy deficit on day 7 which improved from -5870 kcal to -3950 kcal (p < .001). Feeding technique changed significantly with progressive increase of days with nutrition therapy (A: 59% days, B: 69%, C: 71%, p < .001), use of enteral nutrition increased from A to B (stable in C), and days on combined and parenteral nutrition increased progressively. Oral energy intakes were low (mean: 385 kcal*day, 6 kcal*kg*day ). Hospital mortality increased with severity of condition in periods B and C. CONCLUSION: A bottom-up protocol improved nutritional support. The presence of the intensive care unit dietitian provided significant additional progression, which were related to early introduction and route of feeding, and which achieved overall better early energy balance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alternative RNA processing of LMNA pre-mRNA produces three main protein isoforms, that is, lamin A, progerin, and lamin C. De novo mutations that favor the expression of progerin over lamin A lead to Hutchinson-Gilford progeria syndrome (HGPS), providing support for the involvement of LMNA processing in pathological aging. Lamin C expression is mutually exclusive with the splicing of lamin A and progerin isoforms and occurs by alternative polyadenylation. Here, we investigate the function of lamin C in aging and metabolism using mice that express only this isoform. Intriguingly, these mice live longer, have decreased energy metabolism, increased weight gain, and reduced respiration. In contrast, progerin-expressing mice show increased energy metabolism and are lipodystrophic. Increased mitochondrial biogenesis is found in adipose tissue from HGPS-like mice, whereas lamin C-only mice have fewer mitochondria. Consistently, transcriptome analyses of adipose tissues from HGPS and lamin C-only mice reveal inversely correlated expression of key regulators of energy expenditure, including Pgc1a and Sfrp5. Our results demonstrate that LMNA encodes functionally distinct isoforms that have opposing effects on energy metabolism and lifespan in mammals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The energy demands of the brain are high: they account for at least 20% of the body's energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and point at a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: A workshop was held at the National Institute for Diabetes and Digestive and Kidney Diseases with a focus on the impact of sleep and circadian disruption on energy balance and diabetes. The workshop identified a number of key principles for research in this area and a number of specific opportunities. Studies in this area would be facilitated by active collaboration between investigators in sleep/circadian research and investigators in metabolism/diabetes. There is a need to translate the elegant findings from basic research into improving the metabolic health of the American public. There is also a need for investigators studying the impact of sleep/circadian disruption in humans to move beyond measurements of insulin and glucose and conduct more in-depth phenotyping. There is also a need for the assessments of sleep and circadian rhythms as well as assessments for sleep-disordered breathing to be incorporated into all ongoing cohort studies related to diabetes risk. Studies in humans need to complement the elegant short-term laboratory-based human studies of simulated short sleep and shift work etc. with studies in subjects in the general population with these disorders. It is conceivable that chronic adaptations occur, and if so, the mechanisms by which they occur needs to be identified and understood. Particular areas of opportunity that are ready for translation are studies to address whether CPAP treatment of patients with pre-diabetes and obstructive sleep apnea (OSA) prevents or delays the onset of diabetes and whether temporal restricted feeding has the same impact on obesity rates in humans as it does in mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current obesity prevention strategies recommend increasing daily physical activity, assuming that increased activity will lead to corresponding increases in total energy expenditure and prevent or reverse energy imbalance and weight gain [1-3]. Such Additive total energy expenditure models are supported by exercise intervention and accelerometry studies reporting positive correlations between physical activity and total energy expenditure [4] but are challenged by ecological studies in humans and other species showing that more active populations do not have higher total energy expenditure [5-8]. Here we tested a Constrained total energy expenditure model, in which total energy expenditure increases with physical activity at low activity levels but plateaus at higher activity levels as the body adapts to maintain total energy expenditure within a narrow range. We compared total energy expenditure, measured using doubly labeled water, against physical activity, measured using accelerometry, for a large (n = 332) sample of adults living in five populations [9]. After adjusting for body size and composition, total energy expenditure was positively correlated with physical activity, but the relationship was markedly stronger over the lower range of physical activity. For subjects in the upper range of physical activity, total energy expenditure plateaued, supporting a Constrained total energy expenditure model. Body fat percentage and activity intensity appear to modulate the metabolic response to physical activity. Models of energy balance employed in public health [1-3] should be revised to better reflect the constrained nature of total energy expenditure and the complex effects of physical activity on metabolic physiology.