95 resultados para Electrodermal conduction


Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES/HYPOTHESIS: Facial nerve regeneration is limited in some clinical situations: in long grafts, by aged patients, and when the delay between nerve lesion and repair is prolonged. This deficient regeneration is due to the limited number of regenerating nerve fibers, their immaturity and the unresponsiveness of Schwann cells after a long period of denervation. This study proposes to apply glial cell line-derived neurotrophic factor (GDNF) on facial nerve grafts via nerve guidance channels to improve the regeneration. METHODS: Two situations were evaluated: immediate and delayed grafts (repair 7 months after the lesion). Each group contained three subgroups: a) graft without channel, b) graft with a channel without neurotrophic factor; and c) graft with a GDNF-releasing channel. A functional analysis was performed with clinical observation of facial nerve function, and nerve conduction study at 6 weeks. Histological analysis was performed with the count of number of myelinated fibers within the graft, and distally to the graft. Central evaluation was assessed with Fluoro-Ruby retrograde labeling and Nissl staining. RESULTS: This study showed that GDNF allowed an increase in the number and the maturation of nerve fibers, as well as the number of retrogradely labeled neurons in delayed anastomoses. On the contrary, after immediate repair, the regenerated nerves in the presence of GDNF showed inferior results compared to the other groups. CONCLUSIONS: GDNF is a potent neurotrophic factor to improve facial nerve regeneration in grafts performed several months after the nerve lesion. However, GDNF should not be used for immediate repair, as it possibly inhibits the nerve regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Levels of circulating cardiac troponin I (cTnI) or T are correlated to extent of myocardial destruction after an acute myocardial infarction. Few studies analyzing this relation have employed a second-generation cTnI assay or cardiac magnetic resonance (CMR) as the imaging end point. In this post hoc study of the Efficacy of FX06 in the Prevention of Mycoardial Reperfusion Injury (F.I.R.E.) trial, we aimed at determining the correlation between single-point cTnI measurements and CMR-estimated infarct size at 5 to 7 days and 4 months after a first-time ST-elevation myocardial infarction (STEMI) and investigating whether cTnI might provide independent prognostic information regarding infarct size at 4 months even taking into account early infarct size. Two hundred twenty-seven patients with a first-time STEMI were included in F.I.R.E. All patients received primary percutaneous coronary intervention within 6 hours from onset of symptoms. cTnI was measured at 24 and 48 hours after admission. CMR was conducted within 1 week of the index event (5 to 7 days) and at 4 months. Pearson correlations (r) for infarct size and cTnI at 24 hours were r = 0.66 (5 days) and r = 0.63 (4 months) and those for cTnI at 48 hours were r = 0.67 (5 days) and r = 0.65 (4 months). In a multiple regression analysis for predicting infarct size at 4 months (n = 141), cTnI and infarct location retained an independent prognostic role even taking into account early infarct size. In conclusion, a single-point cTnI measurement taken early after a first-time STEMI is a useful marker for infarct size and might also supplement early CMR evaluation in prediction of infarct size at 4 months.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims It is well established that dysfunction of voltage-dependent ion channels results in arrhythmias and conduction disturbances in the foetal and adult heart. However, the involvement of voltage-insensitive cationic TRPC (transient receptor potential canonical) channels remains unclear. We assessed the hypothesis that TRPC channels play a crucial role in the spontaneous activity of the developing heart.Methods and results TRPC isoforms were investigated in isolated hearts obtained from 4-day-old chick embryos. Using RT-PCR, western blotting and co-immunoprecipitation, we report for the first time that TRPC1, 3, 4, 5, 6, and 7 isoforms are expressed at the mRNA and protein levels and that they can form a macromolecular complex with the alpha 1C subunit of the L-type voltage-gated calcium channel (Cav1.2) in atria and ventricle. Using ex vivo electrocardiograms, electrograms of isolated atria and ventricle and ventricular mechanograms, we found that inhibition of TRPC channels by SKF-96365 leads to negative chrono-, dromo-, and inotropic effects, prolongs the QT interval, and provokes first-and second-degree atrioventricular blocks. Pyr3, a specific antagonist of TRPC3, affected essentially atrioventricular conduction. On the other hand, specific blockade of the L-type calcium channel with nifedipine rapidly stopped ventricular contractile activity without affecting rhythmic electrical activity.Conclusions These results give new insights into the key role that TRPC channels, via interaction with the Cav1.2 channel, play in regulation of cardiac pacemaking, conduction, ventricular activity, and contractility during cardiogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RESUME Introduction : Dans le coeur adulte, l'ischémie et la reperfusion entraînent des perturbations électriques, mécaniques, biochimiques et structurales qui peuvent causer des dommages réversibles ou irréversibles selon la sévérité de l'ischémie. Malgré les récents progrès en cardiologie et en chirurgie foetales, la connaissance des mécanismes impliqués dans la réponse du myocarde embryonnaire à un stress hypoxique transitoire demeure lacunaire. Le but de ce travail a donc été de caractériser les effets chrono-, dromo- et inotropes de l'anoxie et de la réoxygénation sur un modèle de coeur embryonnaire isolé. D'autre part, les effets du monoxyde d'azote (NO) et de la modulation des canaux KATP mitochondriaux (mito KATP) sur la récupération fonctionnelle postanoxique ont été étudiés. La production myocardique de radicaux d'oxygène (ROS) et l'activité de MAP Kinases (ERK et JNK) impliquées dans la signalisation cellulaire ont également été déterminées. Méthodes : Des coeurs d'embryons de poulet âgés de 4 jours battant spontanément ont été placés dans une chambre de culture puis soumis à une anoxie de 30 min suivie d'une réoxygénation de 60 min. L'activité électrique (ECG), les contractions de l'oreillette, du ventricule et du conotroncus (détectées par photométrie), la production de ROS (mesure de la fluorescence du DCFH) et l'activité kinase de ERK et JNK dans le ventricule ont été déterminées au cours de l'anoxie et de la réoxygénation. Les coeurs ont été traités avec un bloqueur des NO synthases (L-NAME), un donneur de NO (DETA-NONOate), un activateur (diazoxide) ou un inhibiteur (5-HD) des canaux mitoKATP un inhibiteur non-spécifique des PKC (chélérythrine) ou un piégeur de ROS (MPG). Résultats : L'anoxie et la réoxygénation entraînaient des arythmies (essentiellement d'origine auriculaire) semblables à celles observées chez l'adulte, des troubles de la conduction (blocs auriculo-ventriculaires de 1er, 2ème et 3ème degré) et un ralentissement marqué du couplage excitation-contraction (E-C) ventriculaire. En plus de ces arythmies, la réoxygénation déclenchait le phénomène de Wenckelbach, de rares échappements ventriculaires et une sidération myocardique. Aucune fibrillation, conduction rétrograde ou activité ectopique n'ont été observées. Le NO exogène améliorait la récupération postanoxique du couplage E-C ventriculaire alors que L'inhibition des NOS la ralentissait. L'activation des canaux mito KATP augmentait la production mitochondriale de ROS à la réoxygénation et accélérait la récupération de la conduction (intervalle PR) et du couplage E-C ventriculaire. La protection de ce couplage était abolie par le MPG, la chélérythrine ou le L-NAME. Les fonctions électrique et contractile de tous les coeurs récupéraient après 30-40 min de réoxygénation. L'activité de ERK et de JNK n'était pas modifiée par L'anoxie, mais doublait et quadruplait, respectivement, après 30 min de réoxygénation. Seule l'activité de JNK était diminuée (-60%) par l'activation des canaux mitoKATP. Cet effet inhibiteur était partiellement abolit par le 5-HD. Conclusion: Dans le coeur immature, le couplage E-C ventriculaire semble être un paramètre particulièrement sensible aux conditions d'oxygénation. Sa récupération postanoxique est améliorée par l'ouverture des canaux mitoKATP via une signalisation impliquant les ROS Ies PKC et le NO. Une réduction de l'activité de JNK semble également participer à cette protection. Nos résultats suggèrent que les mitochondries jouent un rôle central dans la modulation des voies de signalisation cellulaire, en particulier lorsque les conditions métaboliques deviennent défavorables. Le coeur embryonnaire isolé représente donc un modèle expérimental utile pour mieux comprendre les mécanismes associés à une hypoxie in utero et pour améliorer les stratégies thérapeutiques en cardiologie et chirurgie foetales. ABSTRACT Physiopathology of the anoxic-reoxygenated embryonic heart: Protective role of NO and KATP channel Aim: In the adult heart, the electrical, mechanical, biochemical and structural disturbances induced by ischemia and reperfusion lead to reversible or irreversible damages depending on the severity and duration of ischemia. In spite of recent advances in fetal cardiology and surgery, little is known regarding the cellular mechanisms involved in hypoxia-induced dysfunction in the developing heart. The aim of this study was to precisely characterize the chrono-, dromo- and inotropic disturbances associated with anoxia-reoxygenation in an embryonic heart model. Furthermore, the roles that nitric oxide (NO), reactive oxygen species (ROS), mitochondrial KATP, (mito KATP) channel and MAP Kinases could play in the stressed developing heart have been investigated. Methods: Embryonic chick hearts (4-day-old) were isolated and submitted in vitro to 30 min anoxia followed by 60 min reoxygenation. Electrical (ECG) and contractile activities of atria, ventricle and conotruncus (photometric detection), ROS production (DCFH fluorescence) and ERK and JNK activity were determined in the ventricle throughout anoxia-reoxygenation. Hearts were treated with NO synthase inhibitor (L-NAME), NO donor (DETA-NONOate), mitoKATP channel opener (diazoxide) or blocket (5-HD), PKC inhibitor (chelerythrine) and ROS scavenger (MPG). Results: Anoxia and reoxygenation provoked arrhythxnias (mainly originating from atrial region), troubles of conduction (st, 2nd, and 3rd degree atrio-ventricular blocks) and disturbances of excitation-contraction (E-C) coupling. In addition to these types of arrhythmias, reoxygenation triggered Wenckebach phenomenon and rare ventricular escape beats. No fibrillations, no ventricular ectopic beats and no electromechanical dissociation were observed. Myocardial stunning was observed during the first 30 min of reoxygenation. All hearts fully recovered their electrical and mechanical functions after 30-40 min of reoxygenation. Exogenous NO improved while NOS inhibition delayed E-C coupling recovery. Mito KATP, channel opening increased reoxygenation-induced ROS production and improved E-C coupling and conduction (PR) recovery. MPG, chelerythrine or L-NAME reversed this effect. Reoxygenation increased ERK and JNK activities land 4-fold, respectively, while anoxia had no effect. MitoKATP channel opening abolished the reoxygenation-induced activation of JNK but had no effect on ERK activity. This inhibitory effect was partly reversed by mitoKATP channel blocker but not by MPG. Conclusion: In the developing heart, ventricular E-C coupling was found to be specially sensitive to hypoxia-reoxygenation and its postanoxic recovery was improved by mitoKATP channel activation via a ROS-, PKC- and NO-dependent pathway. JNK inhibition appears to be involved in this protection. Thus, mitochondria can play a pivotal role in the cellular signalling pathways, notably under critical metabolic conditions. The model of isolated embryonic heart appears to be useful to better understand the mechanisms underlying the myocardial dysfunction induced by an in utero hypoxia and to improve therapeutic strategies in fetal cardiology and surgery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous research has demonstrated covariation of physiological responding with judgments of valence and arousal. However, until now links between these affective dimensions and respiratory measures have not been extensively investigated. In this study, eight picture series of different affective valence and arousal level were shown to 30 subjects, while respiration, skin conductance level (SCL), heart rate (HR) and affective judgments were measured. With increasing pleasantness, inspiratory time lengthened, mean inspiratory flow decreased and thoracic breathing increased. With increasing arousal, inspiratory time and total breath duration shortened and mean inspiratory flow, minute ventilation, thoracic breathing and electrodermal activity increased. These findings confirm the importance of arousal in respiratory responding, but also indicate a modulatory role of affective valence.We propose that the arousal effects reflect energy mobilization in preparation to act, and thatthe valence effects might be a manifestation of an attention bias toward negative stimuli. [Authors]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peripheral myelin protein 2 (Pmp2, P2 or Fabp8), a member of the fatty acid binding protein family, was originally described together with myelin basic protein (Mbp or P1) and myelin protein zero (Mpz or P0) as one of the most abundant myelin proteins in the peripheral nervous system (PNS). Although Pmp2 is predominantly expressed in myelinated Schwann cells, its role in glia is currently unknown. To study its function in PNS biology, we have generated a complete Pmp2 knockout mouse (Pmp2(-/-) ). Comprehensive characterization of Pmp2(-/-) mice revealed a temporary reduction in their motor nerve conduction velocity (MNCV). While this change was not accompanied by any defects in general myelin structure, we detected transitory alterations in the myelin lipid profile of Pmp2(-/-) mice. It was previously proposed that Pmp2 and Mbp have comparable functions in the PNS suggesting that the presence of Mbp can partially mask the Pmp2(-/-) phenotype. Indeed, we found that Mbp lacking Shi(-/-) mice, similar to Pmp2(-/-) animals, have preserved myelin structure and reduced MNCV, but this phenotype was not aggravated in Pmp2(-/-) /Shi(-/-) mutants indicating that Pmp2 and Mbp do not substitute each other's functions in the PNS. These data, together with our observation that Pmp2 binds and transports fatty acids to membranes, uncover a role for Pmp2 in lipid homeostasis of myelinating Schwann cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: We sought to investigate the relationship between infarct and dyssynchrony post- myocardial infarct (MI), in a porcine model. Mechanical dyssynchrony post-MI is associated with left ventricular (LV) remodeling and increased mortality. METHODS: Cine, gadolinium-contrast, and tagged cardiovascular magnetic resonance (CMR) were performed pre-MI, 9 ± 2 days (early post-MI), and 33 ± 10 days (late post-MI) post-MI in 6 pigs to characterize cardiac morphology, location and extent of MI, and regional mechanics. LV mechanics were assessed by circumferential strain (eC). Electro-anatomic mapping (EAM) was performed within 24 hrs of CMR and prior to sacrifice. RESULTS: Mean infarct size was 21 ± 4% of LV volume with evidence of post-MI remodeling. Global eC significantly decreased post MI (-27 ± 1.6% vs. -18 ± 2.5% (early) and -17 ± 2.7% (late), p < 0.0001) with no significant change in peri-MI and MI segments between early and late time-points. Time to peak strain (TTP) was significantly longer in MI, compared to normal and peri-MI segments, both early (440 ± 40 ms vs. 329 ± 40 ms and 332 ± 36 ms, respectively; p = 0.0002) and late post-MI (442 ± 63 ms vs. 321 ± 40 ms and 355 ± 61 ms, respectively; p = 0.012). The standard deviation of TTP in 16 segments (SD16) significantly increased post-MI: 28 ± 7 ms to 50 ± 10 ms (early, p = 0.012) to 54 ± 19 ms (late, p = 0.004), with no change between early and late post-MI time-points (p = 0.56). TTP was not related to reduction of segmental contractility. EAM revealed late electrical activation and greatly diminished conduction velocity in the infarct (5.7 ± 2.4 cm/s), when compared to peri-infarct (18.7 ± 10.3 cm/s) and remote myocardium (39 ± 20.5 cm/s). CONCLUSIONS: Mechanical dyssynchrony occurs early after MI and is the result of delayed electrical and mechanical activation in the infarct.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia syndrome associated with mutations in the cardiac ryanodine receptor gene (Ryr2) in the majority of patients. Previous studies of CPVT patients mainly involved probands, so current insight into disease penetrance, expression, genotype-phenotype correlations, and arrhythmic event rates in relatives carrying the Ryr2 mutation is limited. METHODS AND RESULTS: One-hundred sixteen relatives carrying the Ryr2 mutation from 15 families who were identified by cascade screening of the Ryr2 mutation causing CPVT in the proband were clinically characterized, including 61 relatives from 1 family. Fifty-four of 108 antiarrhythmic drug-free relatives (50%) had a CPVT phenotype at the first cardiological examination, including 27 (25%) with nonsustained ventricular tachycardia. Relatives carrying a Ryr2 mutation in the C-terminal channel-forming domain showed an increased odds of nonsustained ventricular tachycardia (odds ratio, 4.1; 95% CI, 1.5-11.5; P=0.007, compared with N-terminal domain) compared with N-terminal domain. Sinus bradycardia was observed in 19% of relatives, whereas other supraventricular dysrhythmias were present in 16%. Ninety-eight (most actively treated) relatives (84%) were followed up for a median of 4.7 years (range, 0.3-19.0 years). During follow-up, 2 asymptomatic relatives experienced exercise-induced syncope. One relative was not being treated, whereas the other was noncompliant. None of the 116 relatives died of CPVT during a 6.7-year follow-up (range, 1.4-20.9 years). CONCLUSIONS: Relatives carrying an Ryr2 mutation show a marked phenotypic diversity. The vast majority do not have signs of supraventricular disease manifestations. Mutation location may be associated with severity of the phenotype. The arrhythmic event rate during follow-up was low.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS: Experimental models have reported conflicting results regarding the role of dispersion of repolarization in promoting atrial fibrillation (AF). Repolarization alternans, a beat-to-beat alternation in action potential duration, enhances dispersion of repolarization when propagation velocity is involved. METHODS AND RESULTS: In this work, original electrophysiological parameters were analysed to study AF susceptibility in a chronic sheep model of pacing-induced AF. Two pacemakers were implanted, each with a single right atrial lead. Right atrial depolarization and repolarization waves were documented at 2-week intervals. A significant and gradual decrease in the propagation velocity at all pacing rates and in the right atrial effective refractory period (ERP) was observed during the weeks of burst pacing before sustained AF developed when compared with baseline conditions. Right atrial repolarization alternans was observed, but because of the development of 2/1 atrioventricular block with far-field ventricular interference, its threshold could not be precisely measured. Non-sustained AF was not observed at baseline, but appeared during the electrical remodelling in association with a decrease in both ERP and propagation velocity. CONCLUSION: We report here on the feasibility of measuring ERP, atrial repolarization alternans, and propagation velocity kinetics and their potential in predicting susceptibility to AF in a free-behaving model of pacing-induced AF using the standard pacemaker technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate chemical communication between neurons at synapses. A variant iGluR subfamily, the Ionotropic Receptors (IRs), was recently proposed to detect environmental volatile chemicals in olfactory cilia. Here, we elucidate how these peripheral chemosensors have evolved mechanistically from their iGluR ancestors. Using a Drosophila model, we demonstrate that IRs act in combinations of up to three subunits, comprising individual odor-specific receptors and one or two broadly expressed coreceptors. Heteromeric IR complex formation is necessary and sufficient for trafficking to cilia and mediating odor-evoked electrophysiological responses in vivo and in vitro. IRs display heterogeneous ion conduction specificities related to their variable pore sequences, and divergent ligand-binding domains function in odor recognition and cilia localization. Our results provide insights into the conserved and distinct architecture of these olfactory and synaptic ion channels and offer perspectives into the use of IRs as genetically encoded chemical sensors. VIDEO ABSTRACT:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently published criteria using clinical (ataxia or asymmetrical distribution at onset or full development, and sensory loss not restricted to the lower limbs) and electrophysiological items (less than two abnormal lower limb motor nerves and at least an abolished SAP or three SAP below 30% of lower limit of normal in the upper limbs) were sensitive and specific for the diagnosis of sensory neuronopathy (SNN) (Camdessanche et al., Brain, 2009). However, these criteria need to be validated on a large multicenter population. For this, a database collecting cases from fifteen Reference Centers for Neuromuscular diseases in France and Switzerland is currently developed. So far, data from 120 patients with clinically pure sensory neuropathy have been collected. Cases were classified independently from the evaluated criteria as SNN (53), non-SNN (46) or suspected SNN (21) according to the expert's diagnosis. Using the criteria, SNN was possible in 83% (44/53), 23.9% (11/46) and 71.4% (15/21) of cases, respectively. In the non-SSN group, half of the patients with a diagnosis of possible SSN had an ataxic form of inflammatory demyelinating neuropathy. In the SNN group, half of those not retained as possible SNN had CANOMAD, paraneoplasia, or B12 deficiency. In a second step, after application of the items necessary to reach the level of probable SNN (no biological or electrophysiological abnormalities excluding SNN; presence of onconeural antibody, cisplatin treatment, Sj ¨ ogren's syndrome or spinal cord MRI high signal in the posterior column), a final diagnosis of possible or probable SNN was obtained in, respectively, 90.6% (48/53), 8.8% (4/45), and 71.4% (15/21) of patients in the three groups. Among the 5 patients with a final non-SNN but initial SNN diagnosis, 3 had motor conduction abnormalities (one with CANOMAD) and among the 4 patients with a final SNN but initial non-SSN diagnosis, one had anti-Hu antibody and one was discussed as a possible ataxic CIDP. These preliminary results confirm the sensitivity and specificity of the proposed criteria for the diagnosis of SNN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

More than 246 million individuals worldwide are affected by diabetes mellitus (DM) and this number is rapidly increasing (http://www.eatlas. idf.org). 90% of all diabetic patients have type 2 DM, which is characterized by insulin resistance and b-cell dysfunction. Even though diabetic peripheral neuropathy (DPN) is the major chronic complication of DM its underlying pathophysiological mechanisms still remain unknown. To get more insight into the DPN associated with type 2 DM, we characterized the rodent model of this form of diabetes, the db/db mice. The progression of pathological changes in db/db mice mimics the ones observed in humans: increase of the body weight, insulin insensitivity, elevated blood glucose level and reduction in nerve conduction velocity (NCV). Decreased NCV, present in many peripheral neuropathies, is usually associated with demyelination of peripheral nerves. However, our detailed analysis of the sciatic nerves of db/db mice exposed for 4 months to hyperglycemia, failed to reveal any signs of demyelination in spite of significantly reduced NCV in these animals. We therefore currently focus our analysis on the structure of Nodes of Ranvier, regions of intense axo-glial interactions, which also play a crucial role in rapid saltatory impulse conduction. In addition we are also evaluating molecular changes in somas of sensory neurons projecting through sciatic nerve, which are localized in the dorsal root ganglia. We hope that the combination of these approaches will shed light on molecular alterations leading to DPN as a consequence of type 2 DM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple lines of evidence show that matrix metalloproteinases (MMPs) are involved in the peripheral neural system degenerative and regenerative processes. MMP-9 was suggested in particular to play a role in the peripheral nerve after injury or during Wallerian degeneration. Interestingly, our previous analysis of Lpin1 mutant mice (which present morphological signs of active demyelination and acute inflammatory cell migration, similar to processes present in the PNS undergoing Wallerian degeneration) revealed an accumulation of MMP-9 in the endoneurium of affected animals. We therefore generated a mouse line lacking both the Lpin1 and the MMP-9 genes in order to determine if MMP-9 plays a role in either inhibition or potentiation of the demyelinating phenotype present in Lpin1 knockout mice. The inactivation of MMP-9 alone did not lead to defects in PNS structure or function. Interestingly we observed that the double mutant animals showed reduced nerve conduction velocity, lower myelin protein mRNA expressions, and had more histological abnormalities as compared to the Lpin1 single mutants. In addition, based on immunohistochemical analysis and macrophage markers mRNA expression, we found a lower macrophage content in the sciatic nerve of the double mutant animals. Together our data indicate that MMP-9 plays a role in macrophage recruitment during postinjury PNS regeneration processes and suggest that slower macrophage infiltration delays regenerative processes in PNS.