59 resultados para Dynamic modulus of elasticity
Resumo:
An active, solvent-free solid sampler was developed for the collection of 1,6-hexamethylene diisocyanate (HDI) aerosol and prepolymers. The sampler was made of a filter impregnated with 1-(2-methoxyphenyl)piperazine contained in a filter holder. Interferences with HDI were observed when a set of cellulose acetate filters and a polystyrene filter holder were used; a glass fiber filter and polypropylene filter cassette gave better results. The applicability of the sampling and analytical procedure was validated with a test chamber, constructed for the dynamic generation of HDI aerosol and prepolymers in commercial two-component spray paints (Desmodur(R) N75) used in car refinishing. The particle size distribution, temporal stability, and spatial uniformity of the simulated aerosol were established in order to test the sample. The monitoring of aerosol concentrations was conducted with the solid sampler paired to the reference impinger technique (impinger flasks contained 10 mL of 0.5 mg/mL 1-(2-methoxyphenyl)piperazine in toluene) under a controlled atmosphere in the test chamber. Analyses of derivatized HDI and prepolymers were carried out by using high-performance liquid chromatography and ultraviolet detection. The correlation between the solvent-free and the impinger techniques appeared fairly good (Y = 0.979X - 0.161; R = 0.978), when the tests were conducted in the range of 0.1 to 10 times the threshold limit value (TLV) for HDI monomer and up to 60-mu-g/m3 (3 U.K. TLVs) for total -N = C = O groups.
Resumo:
SUMMARYIn the context of the biodiversity crisis, amphibians are experiencing the most severe worldwide decline of all vertebrates and are in urgent need of better management. Efficient conservation strategies rely on sound knowledge of the species biology and of the genetic and demographic processes that might impair their welfare. Nonetheless, these processes are poorly understood in amphibians. Delineating population boundaries remains consequently problematic for these species, while it is of critical importance to define adequate management units for conservation. In this study, our attention focused on the alpine salamander (Salamandra atra), a species that deserves much interest in terms of both conservation biology and evolution. This endemic alpine species shows peculiar life-history traits (viviparity, reduced activity period, slow maturation) and has a slow population turnover, which might be problematic for its persistence in a changing environment. Due to its elusive behaviour (individuals spend most of their time underground and are unavailable for sampling), dynamic processes of gene and individuals were poorly understood for that species. Consequently, its conservation status could hardly be reliably assessed. Similarly the fire salamander (Salamandra salamandra) also poses special challenges for conservation, as no clear demarcation of geographical populations exists and dispersal patterns are poorly known. Through a phylogeographic analysis, we first studied the evolutionary history of the alpine salamander to better document the distribution of the genetic diversity along its geographical range. This study highlighted the presence of multiple divergent lineages in Italy together with a clear genetic divergence between populations from Northern and Dinaric Alps. These signs of cryptic genetic differentiation, which are not accounted for by the current taxonomy of the species, should not be neglected for further definition of conservation units. In addition, our data supported glacial survival of the species in northern peripheral glacial réfugia and nunataks, a pattern rarely documented for long-lived species. Then, we evaluated the level of gene flow between populations at the local scale and tested for asymmetries in male versus female dispersal using both field-based (mark-recapture) and genetic approaches. This study revealed high level of gene flow between populations, which stems mainly from male dispersal. This corroborated the idea that salamanders are much better dispersers than hitherto thought and provided a well- supported example of male-biased dispersal in amphibians. In a third step, based on a mark- recapture survey, we addressed the problem of sampling unavailability in alpine salamanders and evaluated its impact on two monitoring methods. We showed that about three quarters of individuals were unavailable for sampling during sampling sessions, a proportion that can vary with climatic conditions. If not taken into account, these complexities would result in false assumptions on population trends and misdirect conservation efforts. Finally, regarding the daunting task of delineating management units, our attention was drawn on the fire salamander. We conducted a local population genetic study that revealed high levels of gene flow among sampling sites. Management units for this species should consequently be large. Interestingly, despite the presence of several landscape features often reported to act as barriers, genetic breaks occurred at unexpected places. This suggests that landscape features may rather have idiosyncratic effects on population structure. In conclusion, this work brought new insights on both genetic and demographic processes occurring in salamanders. The results suggest that some biological paradigms should be taken with caution when particular species are in focus. Species- specific studies remain thus fundamental for a better understanding of species evolution and conservation, particularly in the context of current global changes.RESUMEDans le contexte de la crise de la biodiversité actuelle, les amphibiens subissent le déclin le plus important de tous les vertébrés et ont urgemment besoin d'une meilleure protection. L'établissement de stratégies de conservation efficaces repose sur des connaissances solides de la biologie des espèces et des processus génétiques et démographiques pouvant menacer leur survie. Ces processus sont néanmoins encore peu étudiés chez les amphibiens.Dans cette étude, notre attention s'est portée sur la salamandre noire (Salamandra atra), une espèce endémique des Alpes dont les traits d'histoire de vie atypiques (viviparité, phase d'activité réduite, lent turnover des populations) pourraient la rendre très vulnérable face aux changements environnementaux. Par ailleurs, en raison de son comportement cryptique (les individus passent la plupart de leur temps sous terre) la dynamique des gènes et des individus est mal comprise chez cette espèce. Il est donc difficile d'évaluer son statut de conservation de manière fiable. La salamandre tachetée {Salamandra salamandra), pour qui il n'existe aucune démarcation géographique apparente des populations, pose également des problèmes en termes de gestion. Dans un premier temps, nous avons étudié l'histoire évolutive de la salamandre noire afin de mieux décrire la distribution de sa diversité génétique au sein de son aire géographique. Cela a permis de mettre en évidence la présence de multiples lignées en Italie, ainsi qu'une nette divergence entre les populations du nord des Alpes et des Alpes dinariques. Ces résultats seront à prendre en compte lorsqu'il s'agira de définir des unités de conservation pour cette espèce. D'autre part, nos données soutiennent l'hypothèse d'une survie glaciaire dans des refuges nordiques périglaciaires ou dans des nunataks, fait rarement documenté pour une espèce longévive. Nous avons ensuite évalué la différentiation génétique des populations à l'échelle locale, ce qui a révélé d'important flux de gènes, ainsi qu'une asymétrie de dispersion en faveur des mâles. Ces résultats corroborent l'idée que les amphibiens dispersent mieux que ce que l'on pensait, et fournissent un exemple robuste de dispersion biaisée en faveur des mâles chez les amphibiens. Nous avons ensuite abordé le problème de Γ inaccessibilité des individus à la capture. Nous avons montré qu'environ trois quarts des individus sont inaccessibles lors des échantillonnages, une proportion qui peut varier en fonction des conditions climatiques. Ignoré, ce processus pourrait entraîner une mauvaise interprétation des fluctuations de populations ainsi qu'une mauvaise allocation des efforts de conservation. Concernant la définition d'unités de gestion pour la salamandre tachetée, nous avons pu mettre en évidence un flux de gènes important entre les sites échantillonnés. Les unités de gestion pour cette espèce devraient donc être étendues. Etonnamment, malgré la présence de nombreuses barrières potentielles au flux de gènes, les démarcations génétiques sont apparues à des endroits inattendus. En conclusion, ce travail a apporté une meilleure compréhension des processus génétiques et démographiques en action chez les salamandres. Les résultats suggèrent que certains paradigmes biologiques devraient être considérés avec précaution quand il s'agit de les appliquer à des espèces particulières. Les études spécifiques demeurent donc fondamentales pour une meilleure compréhension de l'évolution des espèces et leur conservation, tout particulièrement dans le contexte des changements globaux actuels.
Resumo:
Sequential stages in the life cycle of the ionotropic 5-HT(3) receptor (5-HT(3)R) were resolved temporally and spatially in live cells by multicolor fluorescence confocal microscopy. The insertion of the enhanced cyan fluorescent protein into the large intracellular loop delivered a fluorescent 5-HT(3)R fully functional in terms of ligand binding specificity and channel activity, which allowed for the first time a complete real-time visualization and documentation of intracellular biogenesis, membrane targeting, and ligand-mediated internalization of a receptor belonging to the ligand-gated ion channel superfamily. Fluorescence signals of newly expressed receptors were detectable in the endoplasmic reticulum about 3 h after transfection onset. At this stage receptor subunits assembled to form active ligand binding sites as demonstrated in situ by binding of a fluorescent 5-HT(3)R-specific antagonist. After novel protein synthesis was chemically blocked, the 5-HT(3) R populations in the endoplasmic reticulum and Golgi cisternae moved virtually quantitatively to the cell surface, indicating efficient receptor folding and assembly. Intracellular 5-HT(3) receptors were trafficking in vesicle-like structures along microtubules to the cell surface at a velocity generally below 1 mum/s and were inserted into the plasma membrane in a characteristic cluster distribution overlapping with actin-rich domains. Internalization of cell surface 5-HT(3) receptors was observed within minutes after exposure to an extracellular agonist. Our orchestrated use of spectrally distinguishable fluorescent labels for the receptor, its cognate ligand, and specific organelle markers can be regarded as a general approach allowing subcellular insights into dynamic processes of membrane receptor trafficking.
Resumo:
Phagocytosis, whether of food particles in protozoa or bacteria and cell remnants in the metazoan immune system, is a conserved process. The particles are taken up into phagosomes, which then undergo complex remodeling of their components, called maturation. By using two-dimensional gel electrophoresis and mass spectrometry combined with genomic data, we identified 179 phagosomal proteins in the amoeba Dictyostelium, including components of signal transduction, membrane traffic, and the cytoskeleton. By carrying out this proteomics analysis over the course of maturation, we obtained time profiles for 1,388 spots and thus generated a dynamic record of phagosomal protein composition. Clustering of the time profiles revealed five clusters and 24 functional groups that were mapped onto a flow chart of maturation. Two heterotrimeric G protein subunits, Galpha4 and Gbeta, appeared at the earliest times. We showed that mutations in the genes encoding these two proteins produce a phagocytic uptake defect in Dictyostelium. This analysis of phagosome protein dynamics provides a reference point for future genetic and functional investigations.
Resumo:
AIM: Improving cerebral perfusion is an essential component of post-resuscitation care after cardiac arrest (CA), however precise recommendations in this setting are limited. We aimed to examine the effect of moderate hyperventilation (HV) and induced hypertension (IH) on non-invasive cerebral tissue oxygenation (SctO2) in patients with coma after CA monitored with near-infrared spectroscopy (NIRS) during therapeutic hypothermia (TH). METHODS: Prospective pilot study including comatose patients successfully resuscitated from out-of-hospital CA treated with TH, monitored with NIRS. Dynamic changes of SctO2 upon HV and IH were analyzed during the stable TH maintenance phase. HV was induced by decreasing PaCO2 from ∼40 to ∼30 mmHg, at stable mean arterial blood pressure (MAP∼70 mmHg). IH was obtained by increasing MAP from ∼70 to ∼90 mmHg with noradrenaline. RESULTS: Ten patients (mean age 69 years; mean time to ROSC 19 min) were studied. Following HV, a significant reduction of SctO2 was observed (baseline 74.7±4.3% vs. 69.0±4.2% at the end of HV test, p<0.001, paired t-test). In contrast, IH was not associated with changes in SctO2 (baseline 73.6±3.5% vs. 74.1±3.8% at the end of IH test, p=0.24). CONCLUSIONS: Moderate hyperventilation was associated with a significant reduction in SctO2, while increasing MAP to supra-normal levels with vasopressors had no effect on cerebral tissue oxygenation. Our study suggests that maintenance of strictly normal PaCO2 levels and MAP targets of 70mmHg may provide optimal cerebral perfusion during TH in comatose CA patients.
Resumo:
Résumé grand public :Le cerveau se compose de cellules nerveuses appelées neurones et de cellules gliales dont font partie les astrocytes. Les neurones communiquent entre eux par signaux électriques et en libérant des molécules de signalisation comme le glutamate. Les astrocytes ont eux pour charge de capter le glucose depuis le sang circulant dans les vaisseaux sanguins, de le transformer et de le transmettre aux neurones pour qu'ils puissent l'utiliser comme source d'énergie. L'astrocyte peut ensuite utiliser ce glucose de deux façons différentes pour produire de l'énergie : la première s'opère dans des structures appelées mitochondries qui sont capables de produire plus de trente molécules riches en énergie (ATP) à partir d'une seule molécule de glucose ; la seconde possibilité appelée glycolyse peut produire deux molécules d'ATP et un dérivé du glucose appelé lactate. Une théorie couramment débattue propose que lorsque les astrocytes capturent le glutamate libéré par les neurones, ils libèrent en réponse du lactate qui servirait de base énergétique aux neurones. Cependant, ce mécanisme n'envisage pas une augmentation de l'activité des mitochondries des astrocytes, ce qui serait pourtant bien plus efficace pour produire de l'énergie.En utilisant la microscopie par fluorescence, nous avons pu mesurer les changements de concentrations ioniques dans les mitochondries d'astrocytes soumis à une stimulation glutamatergique. Nous avons démontré que les mitochondries des astrocytes manifestent des augmentations spontanées et transitoires de leur concentrations ioniques, dont la fréquence était diminuée au cours d'une stimulation avec du glutamate. Nous avons ensuite montré que la capture de glutamate augmentait la concentration en sodium et acidifiait les mitochondries des astrocytes. En approfondissant ces mécanismes, plusieurs éléments ont suggéré que l'acidification induite diminuerait le potentiel de synthèse d'énergie d'origine mitochondriale et la consommation d'oxygène dans les astrocytes. En résumé, l'ensemble de ces travaux suggère que la signalisation neuronale impliquant le glutamate dicte aux astrocytes de sacrifier temporairement l'efficacité de leur métabolisme énergétique, en diminuant l'activité de leurs mitochondries, afin d'augmenter la disponibilité des ressources énergétiques utiles aux neurones.Résumé :La remarquable efficacité du cerveau à compiler et propager des informations coûte au corps humain 20% de son budget énergétique total. Par conséquent, les mécanismes cellulaires responsables du métabolisme énergétique cérébral se sont adéquatement développés pour répondre aux besoins énergétiques du cerveau. Les dernières découvertes en neuroénergétique tendent à démontrer que le site principal de consommation d'énergie dans le cerveau est situé dans les processus astrocytaires qui entourent les synapses excitatrices. Un nombre croissant de preuves scientifiques a maintenant montré que le transport astrocytaire de glutamate est responsable d'un coût métabolique important qui est majoritairement pris en charge par une augmentation de l'activité glycolytique. Cependant, les astrocytes possèdent également un important métabolisme énergétique de type mitochondrial. Par conséquent, la localisation spatiale des mitochondries à proximité des transporteurs de glutamate suggère l'existence d'un mécanisme régulant le métabolisme énergétique astrocytaire, en particulier le métabolisme mitochondrial.Afin de fournir une explication à ce paradoxe énergétique, nous avons utilisé des techniques d'imagerie par fluorescence pour mesurer les modifications de concentrations ioniques spontanées et évoquées par une stimulation glutamatergique dans des astrocytes corticaux de souris. Nous avons montré que les mitochondries d'astrocytes au repos manifestaient des changements individuels, spontanés et sélectifs de leur potentiel électrique, de leur pH et de leur concentration en sodium. Nous avons trouvé que le glutamate diminuait la fréquence des augmentations spontanées de sodium en diminuant le niveau cellulaire d'ATP. Nous avons ensuite étudié la possibilité d'une régulation du métabolisme mitochondrial astrocytaire par le glutamate. Nous avons montré que le glutamate initie dans la population mitochondriale une augmentation rapide de la concentration en sodium due à l'augmentation cytosolique de sodium. Nous avons également montré que le relâchement neuronal de glutamate induit une acidification mitochondriale dans les astrocytes. Nos résultats ont indiqué que l'acidification induite par le glutamate induit une diminution de la production de radicaux libres et de la consommation d'oxygène par les astrocytes. Ces études ont montré que les mitochondries des astrocytes sont régulées individuellement et adaptent leur activité selon l'environnement intracellulaire. L'adaptation dynamique du métabolisme énergétique mitochondrial opéré par le glutamate permet d'augmenter la quantité d'oxygène disponible et amène au relâchement de lactate, tous deux bénéfiques pour les neurones.Abstract :The remarkable efficiency of the brain to compute and communicate information costs the body 20% of its total energy budget. Therefore, the cellular mechanisms responsible for brain energy metabolism developed adequately to face the energy needs. Recent advances in neuroenergetics tend to indicate that the main site of energy consumption in the brain is the astroglial process ensheating activated excitatory synapses. A large body of evidence has now shown that glutamate uptake by astrocytes surrounding synapses is responsible for a significant metabolic cost, whose metabolic response is apparently mainly glycolytic. However, astrocytes have also a significant mitochondrial oxidative metabolism. Therefore, the location of mitochondria close to glutamate transporters raises the question of the existence of mechanisms for tuning their energy metabolism, in particular their mitochondrial metabolism.To tackle these issues, we used real time imaging techniques to study mitochondrial ionic alterations occurring at resting state and during glutamatergic stimulation of mouse cortical astrocytes. We showed that mitochondria of intact resting astrocytes exhibited individual spontaneous and selective alterations of their electrical potential, pH and Na+ concentration. We found that glutamate decreased the frequency of mitochondrial Na+ transient activity by decreasing the cellular level of ATP. We then investigated a possible link between glutamatergic transmission and mitochondrial metabolism in astrocytes. We showed that glutamate triggered a rapid Na+ concentration increase in the mitochondrial population as a result of plasma-membrane Na+-dependent uptake. We then demonstrated that neuronally released glutamate also induced a mitochondrial acidification in astrocytes. Glutamate induced a pH-mediated and cytoprotective decrease of mitochondrial metabolism that diminished oxygen consumption. Taken together, these studies showed that astrocytes contain mitochondria that are individually regulated and sense the intracellular environment to modulate their own activity. The dynamic regulation of astrocyte mitochondrial energy output operated by glutamate allows increasing oxygen availability and lactate production both being beneficial for neurons.
Resumo:
Sexual reproduction is a fundamental aspect of life. Sex-determination mechanisms are responsible for the sexual fate and development of sexual characteristics in an organism, be it a unicellular alga, a plant, or an animal. Surprisingly, sex-determination mechanisms are not evolutionarily conserved but are bewilderingly diverse and appear to have had rapid turnover rates during evolution. Evolutionary biologists continue to seek a solution to this conundrum. What drives the surprising dynamics of such a fundamental process that always leads to the same outcome: two sex types, male and female? The answer is complex but the ongoing genomic revolution has already greatly increased our knowledge of sex-determination systems and sex chromosomes in recent years. This novel book presents and synthesizes our current understanding, and clearly shows that sex-determination evolution will remain a dynamic field of future research. The Evolution of Sex Determination is an advanced, research level text suitable for graduate students and researchers in genetics, developmental biology, and evolution.
Resumo:
The Eukaryotic Promoter Database (EPD) is an annotated non-redundant collection of eukaryotic POL II promoters, experimentally defined by a transcription start site (TSS). There may be multiple promoter entries for a single gene. The underlying experimental evidence comes from journal articles and, starting from release 73, from 5' ESTs of full-length cDNA clones used for so-called in silico primer extension. Access to promoter sequences is provided by pointers to TSS positions in nucleotide sequence entries. The annotation part of an EPD entry includes a description of the type and source of the initiation site mapping data, links to other biological databases and bibliographic references. EPD is structured in a way that facilitates dynamic extraction of biologically meaningful promoter subsets for comparative sequence analysis. Web-based interfaces have been developed that enable the user to view EPD entries in different formats, to select and extract promoter sequences according to a variety of criteria and to navigate to related databases exploiting different cross-references. Tools for analysing sequence motifs around TSSs defined in EPD are provided by the signal search analysis server. EPD can be accessed at http://www.epd. isb-sib.ch.
Resumo:
A general update review of the dynamic aspect of protein metabolism is presented. The effect of excess protein level on protein metabolism has been the object of a limited number of studies in man. From the information available, it appears that the primary regulatory pathway for body protein homeostasis is the process of amino acid (protein) oxidation.
Resumo:
The misuse of human growth hormone (hGH) in sport is deemed to be unethical and dangerous because of various adverse effects. Thus, it has been added to the International Olympic Committee list of banned substances. Until now, the very low concentration of hGH in the urine made its measurement difficult using classical methodology. Indeed, for routine diagnosis, only plasma measurements were available. However, unlike blood samples, urine is generally provided in abundant quantities and is, at present, the only body fluid allowed to be analysed in sport doping controls. A recently developed enzyme-linked immunosorbent assay (Norditest) makes it now possible, without any extraction, to measure urinary hGH (u-hGH) in a dynamic range of 2-50 ng hGH/l. In our protocol, untreated and treated non-athlete volunteers were followed. Some of them received therapeutical doses of recombinant hGH (Norditropin) for one week either intramuscularly (three increasing doses) or subcutaneously (12 i.u. every day). The u-hGH excretion after treatment showed dramatic increases of 50-100 times the basal values and returned to almost the mean normal level after 24 h. u-hGH was also measured in samples provided by the anti-doping controls at major and minor competitions. Depending on the type of efforts made during the competition, the hGH concentration in urine was dramatically increased. Insulin-like growth factor binding proteins and beta 2-microglobulins in urine and/or in blood could be necessary for the correct investigation of any hGH doping test procedure.
Resumo:
The introduction of engineered nanostructured materials into a rapidly increasing number of industrial and consumer products will result in enhanced exposure to engineered nanoparticles. Workplace exposure has been identified as the most likely source of uncontrolled inhalation of engineered aerosolized nanoparticles, but release of engineered nanoparticles may occur at any stage of the lifecycle of (consumer) products. The dynamic development of nanomaterials with possibly unknown toxicological effects poses a challenge for the assessment of nanoparticle induced toxicity and safety.In this consensus document from a workshop on in-vitro cell systems for nanoparticle toxicity testing11Workshop on 'In-Vitro Exposure Studies for Toxicity Testing of Engineered Nanoparticles' sponsored by the Association for Aerosol Research (GAeF), 5-6 September 2009, Karlsruhe, Germany. an overview is given of the main issues concerning exposure to airborne nanoparticles, lung physiology, biological mechanisms of (adverse) action, in-vitro cell exposure systems, realistic tissue doses, risk assessment and social aspects of nanotechnology. The workshop participants recognized the large potential of in-vitro cell exposure systems for reliable, high-throughput screening of nanoparticle toxicity. For the investigation of lung toxicity, a strong preference was expressed for air-liquid interface (ALI) cell exposure systems (rather than submerged cell exposure systems) as they more closely resemble in-vivo conditions in the lungs and they allow for unaltered and dosimetrically accurate delivery of aerosolized nanoparticles to the cells. An important aspect, which is frequently overlooked, is the comparison of typically used in-vitro dose levels with realistic in-vivo nanoparticle doses in the lung. If we consider average ambient urban exposure and occupational exposure at 5mg/m3 (maximum level allowed by Occupational Safety and Health Administration (OSHA)) as the boundaries of human exposure, the corresponding upper-limit range of nanoparticle flux delivered to the lung tissue is 3×10-5-5×10-3μg/h/cm2 of lung tissue and 2-300particles/h/(epithelial) cell. This range can be easily matched and even exceeded by almost all currently available cell exposure systems.The consensus statement includes a set of recommendations for conducting in-vitro cell exposure studies with pulmonary cell systems and identifies urgent needs for future development. As these issues are crucial for the introduction of safe nanomaterials into the marketplace and the living environment, they deserve more attention and more interaction between biologists and aerosol scientists. The members of the workshop believe that further advances in in-vitro cell exposure studies would be greatly facilitated by a more active role of the aerosol scientists. The technical know-how for developing and running ALI in-vitro exposure systems is available in the aerosol community and at the same time biologists/toxicologists are required for proper assessment of the biological impact of nanoparticles.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are highly successful plant symbionts. They reproduce clonally producing multinucleate spores. It has been suggested that some AMF harbor genetically different nuclei. However, recent advances in sequencing the Glomus irregulare genome have indicated very low within-fungus polymorphism. We tested the null hypothesis that, with no genetic differences among nuclei, no significant genetic or phenotypic variation would occur among clonal single spore lines generated from one initial AMF spore. Furthermore, no additional variation would be expected in the following generations of single spore lines. Genetic diversity contained in one initial spore repeatedly gave rise to genetically different variants of the fungus with novel phenotypes. The genetic changes represented quantitative changes in allele frequencies, most probably as a result of changes in the frequency of genetic variation partitioned on different nuclei. The genetic and phenotypic variation is remarkable, given that it arose repeatedly from one clonal individual. Our results highlight the dynamic nature of AMF genetics. Even though within-fungus genetic variation is low, some is probably partitioned among nuclei and potentially causes changes in the phenotype. Our results are important for understanding AMF genetics, as well as for researchers and biotechnologists hoping to use AMF genetic diversity for the improvement of AMF inoculum.
Resumo:
The age-dependent choice between expressing individual learning (IL) or social learning (SL) affects cumulative cultural evolution. A learning schedule in which SL precedes IL is supportive of cumulative culture because the amount of nongenetically encoded adaptive information acquired by previous generations can be absorbed by an individual and augmented. Devoting time and energy to learning, however, reduces the resources available for other life-history components. Learning schedules and life history thus coevolve. Here, we analyze a model where individuals may have up to three distinct life stages: "infants" using IL or oblique SL, "juveniles" implementing IL or horizontal SL, and adults obtaining material resources with learned information. We study the dynamic allocation of IL and SL within life stages and how this coevolves with the length of the learning stages. Although no learning may be evolutionary stable, we find conditions where cumulative cultural evolution can be selected for. In that case, the evolutionary stable learning schedule causes individuals to use oblique SL during infancy and a mixture between IL and horizontal SL when juvenile. We also find that the selected pattern of oblique SL increases the amount of information in the population, but horizontal SL does not do so.
Resumo:
We construct a dynamic theory of civil conflict hinging on inter-ethnic trust and trade. The model economy is inhabitated by two ethnic groups. Inter-ethnic trade requires imperfectly observed bilateral investments and one group has to form beliefs on the average propensity to trade of the other group. Since conflict disrupts trade, the onset of a conflict signals that the aggressor has a low propensity to trade. Agents observe the history of conflicts and update their beliefs over time, transmitting them to the next generation. The theory bears a set of testable predictions. First, war is a stochastic process whose frequency depends on the state of endogenous beliefs. Second, the probability of future conflicts increases after each conflict episode. Third, "accidental" conflicts that do not reflect economic fundamentals can lead to a permanent breakdown of trust, plunging a society into a vicious cycle of recurrent conflicts (a war trap). The incidence of conflict can be reduced by policies abating cultural barriers, fostering inter-ethnic trade and human capital, and shifting beliefs. Coercive peace policies such as peacekeeping forces or externally imposed regime changes have instead no persistent effects.
Resumo:
PURPOSE: To determine the relationship between carotid intima-media thickness (IMT), coronary artery calcification (CAC), and myocardial blood flow (MBF) at rest and during vasomotor stress in type 2 diabetes mellitus (DM). METHODS: In 68 individuals, carotid IMT was measured using high-resolution vascular ultrasound, while the presence of CAC was determined with electron beam tomography (EBT). Global and regional MBF was determined in milliliters per gram per minute with (13)N-ammonia and positron emission tomography (PET) at rest, during cold pressor testing (CPT), and during adenosine (ADO) stimulation. RESULTS: There was neither a relationship between carotid IMT and CAC (r = 0.10, p = 0.32) nor between carotid IMT and coronary circulatory function in response to CPT and during ADO (r = -0.18, p = 0.25 and r = 0.10, p = 0.54, respectively). In 33 individuals, EBT detected CAC with a mean Agatston-derived calcium score of 44 +/- 18. There was a significant difference in regional MBFs between territories with and without CAC at rest and during ADO-stimulated hyperemia (0.69 +/- 0.24 vs. 0.74 +/- 0.23 and 1.82 +/- 0.50 vs. 1.95 +/- 0.51 ml/g/min; p < or = 0.05, respectively) and also during CPT in DM but less pronounced (0.81 +/- 0.24 vs. 0.83 +/- 0.23 ml/g/min; p = ns). The increase in CAC was paralleled with a progressive regional decrease in resting as well as in CPT- and ADO-related MBFs (r = -0.36, p < or = 0.014; r = -0.46, p < or = 0.007; and r = -0.33, p < or = 0.041, respectively). CONCLUSIONS: The absence of any correlation between carotid IMT and coronary circulatory function in type 2 DM suggests different features and stages of early atherosclerosis in the peripheral and coronary circulation. PET-measured MBF heterogeneity at rest and during vasomotor stress may reflect downstream fluid dynamic effects of coronary artery disease (CAD)-related early structural alterations of the arterial wall.