151 resultados para Direct currents


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Neuroimaging studies show cerebellar activations in a wide range of cognitive tasks and patients with cerebellar lesions often present cognitive deficits suggesting a cerebellar role in higher-order cognition. OBJECTIVE: We used cathodal transcranial direct current stimulation (tDCS), known to inhibit neuronal excitability, over the cerebellum to investigate if cathodal tDCS impairs verbal working memory, an important higher-order cognitive faculty. METHOD: We tested verbal working memory as measured by forward and backward digit spans in 40 healthy young participants before and after applying cathodal tDCS (2 mA, stimulation duration 25 min) to the right cerebellum using a randomized, sham-controlled, double-blind, cross-over design. In addition, we tested the effect of cerebellar tDCS on word reading, finger tapping and a visually cued sensorimotor task. RESULTS: In line with lower digit spans in patients with cerebellar lesions, cerebellar tDCS reduced forward digit spans and blocked the practice dependent increase in backward digit spans. No effects of tDCS on word reading, finger tapping or the visually cued sensorimotor task were found. CONCLUSION: Our results support the view that the cerebellum contributes to verbal working memory as measured by forward and backward digit spans. Moreover, the induction of reversible "virtual cerebellar lesions" in healthy individuals by means of tDCS may improve our understanding of the mechanistic basis of verbal working memory deficits in patients with cerebellar lesions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light influences sleep and alertness either indirectly through a well-characterized circadian pathway or directly through yet poorly understood mechanisms. Melanopsin (Opn4) is a retinal photopigment crucial for conveying nonvisual light information to the brain. Through extensive characterization of sleep and the electrocorticogram (ECoG) in melanopsin-deficient (Opn4(-/-)) mice under various light-dark (LD) schedules, we assessed the role of melanopsin in mediating the effects of light on sleep and ECoG activity. In control mice, a light pulse given during the habitual dark period readily induced sleep, whereas a dark pulse given during the habitual light period induced waking with pronounced theta (7-10 Hz) and gamma (40-70 Hz) activity, the ECoG correlates of alertness. In contrast, light failed to induce sleep in Opn4(-/-) mice, and the dark-pulse-induced increase in theta and gamma activity was delayed. A 24-h recording under a LD 1-hratio1-h schedule revealed that the failure to respond to light in Opn4(-/-) mice was restricted to the subjective dark period. Light induced c-Fos immunoreactivity in the suprachiasmatic nuclei (SCN) and in sleep-active ventrolateral preoptic (VLPO) neurons was importantly reduced in Opn4(-/-) mice, implicating both sleep-regulatory structures in the melanopsin-mediated effects of light. In addition to these acute light effects, Opn4(-/-) mice slept 1 h less during the 12-h light period of a LD 12ratio12 schedule owing to a lengthening of waking bouts. Despite this reduction in sleep time, ECoG delta power, a marker of sleep need, was decreased in Opn4(-/-) mice for most of the (subjective) dark period. Delta power reached after a 6-h sleep deprivation was similarly reduced in Opn4(-/-) mice. In mice, melanopsin's contribution to the direct effects of light on sleep is limited to the dark or active period, suggesting that at this circadian phase, melanopsin compensates for circadian variations in the photo sensitivity of other light-encoding pathways such as rod and cones. Our study, furthermore, demonstrates that lack of melanopsin alters sleep homeostasis. These findings call for a reevaluation of the role of light on mammalian physiology and behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The medulla oblongata (MO) contains a high density of glycinergic synapses and a particularly high concentration of glycine. The aims of this study were to measure directly in vivo the neurochemical profile, including glycine, in MO using a spin-echo-based (1)H MRS sequence at TE?=?2.8 ms and to compare it with three other brain regions (cortex, striatum and hippocampus) in the rat. Glycine was quantified in MO at TE?=?2.8 ms with a Cramér-Rao lower bound (CRLB) of approximately 5%. As a result of the relatively low level of glycine in the other three regions, the measurement of glycine was performed at TE?=?20 ms, which provides a favorable J-modulation of overlapping myo-inositol resonance. The other 14 metabolites composing the neurochemical profile were quantified in vivo in MO with CRLBs below 25%. Absolute concentrations of metabolites in MO, such as glutamate, glutamine, ?-aminobutyrate, taurine and glycine, were in the range of previous in vitro quantifications in tissue extracts. Compared with the other regions, MO had a three-fold higher glycine concentration, and was characterised by reduced (p?<?0.001) concentrations of glutamate (-50?±?4%), glutamine (-54?±?3%) and taurine (-78?±?3%). This study suggests that the functional specialisation of distinct brain regions is reflected in the neurochemical profile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The H(+)-gated acid-sensing ion channels (ASICs) are expressed in dorsal root ganglion (DRG) neurones. Studies with ASIC knockout mice indicated either a pro-nociceptive or a modulatory role of ASICs in pain sensation. We have investigated in freshly isolated rat DRG neurones whether neurones with different ASIC current properties exist, which may explain distinct cellular roles, and we have investigated ASIC regulation in an experimental model of neuropathic pain. Small-diameter DRG neurones expressed three different ASIC current types which were all preferentially expressed in putative nociceptors. Type 1 currents were mediated by ASIC1a homomultimers and characterized by steep pH dependence of current activation in the pH range 6.8-6.0. Type 3 currents were activated in a similar pH range as type 1, while type 2 currents were activated at pH < 6. When activated by acidification to pH 6.8 or 6.5, the probability of inducing action potentials correlated with the ASIC current density. Nerve injury induced differential regulation of ASIC subunit expression and selective changes in ASIC function in DRG neurones, suggesting a complex reorganization of ASICs during the development of neuropathic pain. In summary, we describe a basis for distinct cellular functions of different ASIC types in small-diameter DRG neurones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Pharmacological interruption of the renin-angiotensin system focuses on optimization of blockade. As a measure of intrarenal renin activity, we have examined renal plasma flow (RPF) responses in a standardized protocol. Compared with responses with angiotensin-converting enzyme inhibition (rise in RPF approximately 95 mL x min(-1) x 1.73 m(-2)), greater renal vasodilation with angiotensin receptor blockers (approximately 145 mL x min(-1) x 1.73 m(-2)) suggested more effective blockade. We predicted that blockade with the direct oral renin inhibitor aliskiren would produce renal vascular responses exceeding those induced by angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. METHODS AND RESULTS: Twenty healthy normotensive subjects were studied on a low-sodium (10 mmol/d) diet, receiving separate escalating doses of aliskiren. Six additional subjects received captopril 25 mg as a low-sodium comparison and also received aliskiren on a high-sodium (200 mmol/d) diet. RPF was measured by clearance of para-aminohippurate. Aliskiren induced a remarkable dose-related renal vasodilation in low-sodium balance. The RPF response was maximal at the 600-mg dose (197+/-27 mL x min(-1) x 1.73 m(-2)) and exceeded responses to captopril (92+/-20 mL x min(-1) x 1.73 m(-2); P<0.01). Furthermore, significant residual vasodilation was observed 48 hours after each dose (P<0.01). The RPF response on a high-sodium diet was also higher than expected (47+/-17 mL x min(-1) x 1.73 m(-2)). Plasma renin activity and angiotensin levels were reduced in a dose-related manner. As another functional index of the effect of aliskiren, we found significant natriuresis on both diets. CONCLUSIONS: Renal vasodilation in healthy people with the potent renin inhibitor aliskiren exceeded responses seen previously with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. The effects were longer lasting and were associated with significant natriuresis. These results indicate that aliskiren may provide more complete and thus more effective blockade of the renin-angiotensin system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liddle's syndrome is a genetic form of hypertension linked to Na(+) retention caused by activating mutations in the COOH terminus of the beta or gamma subunit of the epithelial sodium channel (ENaC). In this study, we used the short-circuit current (I(sc)) method to investigate the effects of deamino-8-d-arginine vasopressin (dDAVP) on Na(+) and Cl(-) fluxes in primary cultures of cortical collecting ducts (CCDs) microdissected from the kidneys of mice with Liddle's syndrome carrying a stop codon mutation, corresponding to the beta-ENaC R(566) stop mutation (L) found in the original pedigree. Compared to wild-type (+/+) CCD cells, untreated L/+ and L/L CCD cells exhibited 2.7- and 4.2-fold increases, respectively, in amiloride-sensitive (Ams) I(sc), reflecting ENaC-dependent Na(+) absorption. Short-term incubation with dDAVP caused a rapid and significant increase (approximately 2-fold) in Ams I(sc) in +/+, but not in L/+ or L/L CCD cells. In sharp contrast, dDAVP induced a greater increase in 5-nitro-2-(3-phenylpropamino)benzoate (NPPB)-inhibited apical Cl(-) currents in amiloride-treated L/L and L/+ cells than in their +/+ counterparts. I(sc) recordings performed under apical ion substituted conditions revealed that the dDAVP-stimulated apical secretion of Cl(-), which was absent in cultured CCDs lacking CFTR, was 1.8-fold greater in L/+ and 3.7-fold greater in L/L CCD cells than in their +/+ CCD counterparts. After the basal membrane had been permeabilized with nystatin and a basal-to-apical Cl(-) gradient had been imposed, dDAVP also stimulated larger Cl(-) currents across L/L and L/+ CCD layers than +/+ CCD layers. These findings demonstrate that vasopressin stimulates greater apical CFTR Cl(-) conductance in the renal CCD cells of mice with Liddle's syndrome than in wild-type mice. This effect could contribute to the enhanced NaCl reabsorption observed in the distal nephron of patients with Liddle's syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A survey of medical ambulatory practice was carried out in February-March 1981 in the two Swiss cantons of Vaud and Fribourg (total population: 700,000), in which 205 physicians participated. The methodology used was inspired from the U.S. National Ambulatory Medical Care Survey, the data collection instrument of which was adapted to our conditions; in addition, data were gathered on all referrals prescribed by 154 physicians during two weeks. (The instruments used are presented.) The potential and limits of this type of survey are discussed, as well as the representativity of the participating physicians and of the recorded visits, which are a systematic sample of over 43,000 visits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a new and accessible approach to establishing certain results concerning the discounted penalty function. The direct approach consists of two steps. In the first step, closed-form expressions are obtained in the special case in which the claim amount distribution is a combination of exponential distributions. A rational function is useful in this context. For the second step, one observes that the family of combinations of exponential distributions is dense. Hence, it suffices to reformulate the results of the first step to obtain general results. The surplus process has downward and upward jumps, modeled by two independent compound Poisson processes. If the distribution of the upward jumps is exponential, a series of new results can be obtained with ease. Subsequently, certain results of Gerber and Shiu [H. U. Gerber and E. S. W. Shiu, North American Actuarial Journal 2(1): 48–78 (1998)] can be reproduced. The two-step approach is also applied when an independent Wiener process is added to the surplus process. Certain results are related to Zhang et al. [Z. Zhang, H. Yang, and S. Li, Journal of Computational and Applied Mathematics 233: 1773–1 784 (2010)], which uses different methods.