279 resultados para Differential fluoresence induction
Resumo:
BACKGROUND: The efficacy of vedolizumab, an α4β7 integrin antibody, in Crohn's disease is unknown. METHODS: In an integrated study with separate induction and maintenance trials, we assessed intravenous vedolizumab therapy (300 mg) in adults with active Crohn's disease. In the induction trial, 368 patients were randomly assigned to receive vedolizumab or placebo at weeks 0 and 2 (cohort 1), and 747 patients received open-label vedolizumab at weeks 0 and 2 (cohort 2); disease status was assessed at week 6. In the maintenance trial, 461 patients who had had a response to vedolizumab were randomly assigned to receive placebo or vedolizumab every 8 or 4 weeks until week 52. RESULTS: At week 6, a total of 14.5% of the patients in cohort 1 who received vedolizumab and 6.8% who received placebo were in clinical remission (i.e., had a score on the Crohn's Disease Activity Index [CDAI] of ≤150, with scores ranging from 0 to approximately 600 and higher scores indicating greater disease activity) (P=0.02); a total of 31.4% and 25.7% of the patients, respectively, had a CDAI-100 response (≥100-point decrease in the CDAI score) (P=0.23). Among patients in cohorts 1 and 2 who had a response to induction therapy, 39.0% and 36.4% of those assigned to vedolizumab every 8 weeks and every 4 weeks, respectively, were in clinical remission at week 52, as compared with 21.6% assigned to placebo (P<0.001 and P=0.004 for the two vedolizumab groups, respectively, vs. placebo). Antibodies against vedolizumab developed in 4.0% of the patients. Nasopharyngitis occurred more frequently, and headache and abdominal pain less frequently, in patients receiving vedolizumab than in patients receiving placebo. Vedolizumab, as compared with placebo, was associated with a higher rate of serious adverse events (24.4% vs. 15.3%), infections (44.1% vs. 40.2%), and serious infections (5.5% vs. 3.0%). CONCLUSIONS: Vedolizumab-treated patients with active Crohn's disease were more likely than patients receiving placebo to have a remission, but not a CDAI-100 response, at week 6; patients with a response to induction therapy who continued to receive vedolizumab (rather than switching to placebo) were more likely to be in remission at week 52. Adverse events were more common with vedolizumab. (Funded by Millennium Pharmaceuticals; GEMINI 2 ClinicalTrials.gov number, NCT00783692.).
Resumo:
Plants orient their growth depending on directional stimuli such as light and gravity, in a process known as tropic response. Tropisms result from asymmetrical accumulation of auxin across the responding organ relative to the direction of the stimulus, which causes differential growth rates on both sides of the organ. Here, we show that gibberellins (GAs) attenuate the gravitropic reorientation of stimulated hypocotyls of dark-grown Arabidopsis (Arabidopsis thaliana) seedlings. We show that the modulation occurs through induction of the expression of the negative regulator of auxin signaling INDOLE-3-ACETIC ACID INDUCIBLE19/MASSUGU2. The biological significance of this regulatory mechanism involving GAs and auxin seems to be the maintenance of a high degree of flexibility in tropic responses. This notion is further supported by observations that GA-deficient seedlings showed a much lower variance in the response to gravity compared to wild-type seedlings and that the attenuation of gravitropism by GAs resulted in an increased phototropic response. This suggests that the interplay between auxin and GAs may be particularly important for plant orientation under competing tropic stimuli.
Resumo:
Glutaryl-CoA dehydrogenase (GCDH, EC 1.3.99.7) deficiency, known as glutaric acidemia type I, is one of the more common organic acidurias. To investigate the role of this pathway in different organs we studied the tissue-specific expression pattern of rat Gcdh. The open reading frame cDNA of the rat Gcdh gene was cloned from rat brain mRNA by RT-PCR, allowing the synthesis of digoxigenin-labeled in situ hybridization (ISH) riboprobes. Gcdh mRNA expression was analyzed by ISH on cryosections of adult rat brain, kidney, liver, spleen and heart muscle, as well as on E15 and E18 rat embryos. Gcdh was found expressed in the whole rat brain, almost exclusively in neurons. Gcdh was absent from astrocytes but expressed in rare oligodendrocytes. Strong Gcdh expression was found in liver and spleen, where expression appears predominant to lymphatic nodules. In kidney, the highest Gcdh expression is found in the juxtamedullar cortex (but not in glomerula), and at lower levels in medulla. Heart muscle was negative. During embryonic development, Gcdh was found well expressed in liver, intestinal mucosa and skin, as well as at lower levels in CNS. Further studies are ongoing to provide evidence on the presence of the entire pathway in CNS in order to understand the mechanisms leading to neurotoxicity in glutaric aciduria. The high expression of Gcdh in kidney may explain why certain patients with residual enzyme activity are low excretors at the urine metabolite level.
Resumo:
Ultraviolet-C irradiation as a method to induce the production of plant compounds with antifungal properties was investigated in the leaves of 18 plant species. A susceptibility assay to determine the antifungal susceptibility of filamentous fungi was developed based on an agar dilution series in microtiter plates. UV irradiation strongly induced antifungal properties in five species against a clinical Fusarium solani strain that was responsible for an onychomycosis case that was resistant to classic pharmacological treatment. The antifungal properties of three additional plant species were either unaffected or reduced by UV-C irradiation. This study demonstrates that UV-C irradiation is an effective means of modulating the antifungal activity of very diverse plants from a screening perspective.
Resumo:
Adherens junctions (AJs) and cell polarity complexes are key players in the establishment and maintenance of apical-basal cell polarity. Loss of AJs or basolateral polarity components promotes tumor formation and metastasis. Recent studies in vertebrate models show that loss of AJs or loss of the basolateral component Scribble (Scrib) cause deregulation of the Hippo tumor suppressor pathway and hyperactivation of its downstream effectors Yes-associated protein (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ). However, whether AJs and Scrib act through the same or independent mechanisms to regulate Hippo pathway activity is not known. Here, we dissect how disruption of AJs or loss of basolateral components affect the activity of the Drosophila YAP homolog Yorkie (Yki) during imaginal disc development. Surprisingly, disruption of AJs and loss of basolateral proteins produced very different effects on Yki activity. Yki activity was cell-autonomously decreased but non-cell-autonomously elevated in tissues where the AJ components E-cadherin (E-cad) or α-catenin (α-cat) were knocked down. In contrast, scrib knockdown caused a predominantly cell-autonomous activation of Yki. Moreover, disruption of AJs or basolateral proteins had different effects on cell polarity and tissue size. Simultaneous knockdown of α-cat and scrib induced both cell-autonomous and non-cell-autonomous Yki activity. In mammalian cells, knockdown of E-cad or α-cat caused nuclear accumulation and activation of YAP without overt effects on Scrib localization and vice versa. Therefore, our results indicate the existence of multiple, genetically separable inputs from AJs and cell polarity complexes into Yki/YAP regulation.
Resumo:
Objective: Standard treatment of locally advanced (stages III and IV A-B) nasopharyngeal carcinoma (NPC) consists in chemoradiotherapy with 5-y survival rates of around 60%. However, acute toxicity prevents the administration of adequate adjuvant chemotherapy in nearly half of the patients. This situation has led to the hypothesis that induction chemotherapy followed by chemoradiotherapy may be a superior approach. Many ongoing studies are testing the role of induction chemotherapy in this setting. Newer radiotherapy techniques are becoming available (intensity modulated radiotherapy [IMRT] and tomotherapy). They can achieve a higher degree of accuracy in conforming the radiation to the planned target volume while sparing normal tissue resulting in less acute and long-term toxicity. Methods: We report here our local experience of 11 consecutive locally advanced NPC patients treated between June 2004 and October 2007. Median age was 46 years (range, 17-65). All but one were male patients. Initial stage was stage III in 5, and stage IVA-B in 6 patients. Treatment consisted of 3 cycles of induction TCF (Docetaxel 75 mg/m2- Cisplatin 75 mg/m2- 5-fluorouracil 750 mg/m2/d 5 days) chemotherapy followed by concomitant chemoradiotherapy with 3 cycles of cisplatin (100 mg/m2), or carboplatin (AUC 5) in case of renal impairment. Radiotherapy was delivered by either IMRT or tomotherapy. Macroscopic disease (tumor + involved lymph nodes) was treated with 70 Gy, 2 Gy/fraction (IMRT), or 69.6 Gy, 1.12 Gy/fraction (simultaneus integrated boost [SIB] technique). Elective nodal irradiation of 46-54 Gy lymph was performed in all patients, whereas elective irradiation of the entire nasopharynx (60 Gy) half of patients. Results: All but one tumor were EBV positive. Induction chemotherapy was done as planned for 8 patients (73%). Two patients had only 2 cycles, 1 patient had only1 cycle of TCF, and the other without docetaxel. Concomitant chemotherapy was given as planned in 7 patients (64%). Four patients had only 2 cycles. Radiotherapy could be delivered as planned in all patients. Eight weeks post treatment all patients proved to have a CR (CR or uCR). After a median follow-up of 11 months (range, 6-38 months) only one patient has relapsed. Details on acute and 1 year toxicities will be presented. Conclusion: Treatment of locally advancedNPC with induction and concomitant chemotherapy is feasible and well tolerated. The use of IMRT or tomotherapy technique seems to ameliorate the therapeutic index particularly in regard with xerostomia. All our patients presented a complete response. For the assessment of survival and long-term toxicity, a longer follow-up period is needed.
Resumo:
Drinking motives (DM) reflect the reasons why individuals drink alcohol. Weekdays are mainly dedicated to work, whereas weekends are generally associated with spending time with friends during special events or leisure activities; using alcohol on weekdays and weekends may also be related to different DM. This study examined whether DM were differentially associated with drinking volume (DV) on weekdays and weekends. A representative sample of 5,391 young Swiss men completed a questionnaire assessing weekday and weekend DV, as well as their DM, namely, enhancement, social, coping, and conformity motives. Associations of DM with weekday and weekend DV were examined using structural equation models. Each DM was tested individually in a separate model; all associations were positive and generally stronger (except conformity) for weekend rather than for weekday DV. Further specific patterns of association were found when DM were entered into a single model simultaneously. Associations with weekday and with weekend DV were positive for enhancement and coping motives. However, associations were stronger with weekend rather than with weekday DV for enhancement, and stronger with weekday than with weekend DV for coping motives. Associations of social motives were not significant with weekend DV and negative with weekday DV. Conformity motives were negatively associated with weekend DV and positively related to weekday DV. These results suggest that interventions targeting enhancement motives should be particularly effective at decreasing weekend drinking, whereas interventions targeted at coping motives would be particularly effective at reducing alcohol use on weekdays. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Resumo:
This communication reports the specific induction of calmodulin kinase IV by the thyroid hormone 3,3',5-triiodo-L-thyronine (T3) in a time- and concentration-dependent manner at a very early stage of brain differentiation using a fetal rat telencephalon primary cell culture system, which can grow and differentiate under chemically defined conditions. The induction of the enzyme that can be observed both on the mRNA and on the protein level is T3-specific, i.e. it cannot be induced by retinoic acid or reverse T3, and can be inhibited on both the transcriptional and the translational level by adding to the culture medium actinomycin D or cycloheximide, respectively. The earliest detection of calmodulin kinase IV in the fetal brain tissue of the rat is at days E16/E17, both on the mRNA as well as on the protein level. This is the first report in which a second messenger-dependent kinase involved in the control of cell regulatory processes is itself controlled by a primary messenger, the thyroid hormone.
Resumo:
Direct electrical stimulation of the colon offers a promising approach for the induction of propulsive colonic contractions by using an implantable device. The objective of this study was to assess the feasibility to induce colonic contractions using a commercially available battery-operated stimulator (maximum pulse width of 1 ms and maximum amplitude of 10 V). Three pairs of pacing electrodes were inserted into the cecal seromuscular layer of anesthetized pigs. During a first set of in vivo experiments conducted on six animals, a pacing protocol leading to cecum contractions was determined: stimulation bursts with 1 ms pulse width, 10 V amplitude (7-15 mA), 120 Hz frequency, and 30-s burst duration, repeated every 2-5 min. In a second testing phase, an evaluation of the pacing protocol was performed in four animals (120 stimulation bursts in total). By using the battery-operated stimulator, contractions of the cecum and movement of contents could be induced in 92% of all stimulations. A cecal shortening of about 30% and an average intraluminal pressure increase of 10.0 +/- 6.0 mmHg were observed.
Resumo:
Accumulating evidence suggests that changes in the metabolic signature of astrocytes underlie their response to neuroinflammation, but how proinflammatory stimuli induce these changes is poorly understood. By monitoring astrocytes following acute cortical injury, we identified a differential and region-specific remodeling of their mitochondrial network: while astrocytes within the penumbra of the lesion undergo mitochondrial elongation, those located in the core-the area invaded by proinflammatory cells-experience transient mitochondrial fragmentation. In brain slices, proinflammatory stimuli reproduced localized changes in mitochondrial dynamics, favoring fission over fusion. This effect was triggered by Drp1 phosphorylation and ultimately resulted in reduced respiratory capacity. Furthermore, maintenance of the mitochondrial architecture critically depended on the induction of autophagy. Deletion of Atg7, required for autophagosome formation, prevented the reestablishment of tubular mitochondria, leading to marked reactive oxygen species accumulation and cell death. Thus, our data reveal autophagy to be essential for regenerating astrocyte mitochondrial networks during inflammation.
Resumo:
Monitoring of T-cell responses in genital mucosa has remained a major challenge because of the absence of lymphoid aggregates and the low abundance of T cells. Here we have adapted to genital tissue a sensitive real-time reverse transcription-PCR (TaqMan) method to measure induction of gamma interferon (IFN-gamma) mRNA transcription after 3 h of antigen-specific activation of CD8 T cells. For this purpose, we vaccinated C57BL/6 mice subcutaneously with human papillomavirus type 16 L1 virus-like particles and monitored the induction of CD8 T cells specific to the L1(165-173) H-2D(b)-restricted epitope. Comparison of the responses induced in peripheral blood mononuclear cells and lymph nodes (LN) by L1-specific IFN-gamma enzyme-linked immunospot assay and TaqMan determination of the relative increase in L1-specific IFN-gamma mRNA induction normalized to the content of CD8b mRNA showed a significant correlation, despite the difference in the readouts. Most of the cervicovaginal tissues could be analyzed by the TaqMan method if normalization to glyceraldehyde-3-phosphate dehydrogenase mRNA was used and a significant L1-specific IFN-gamma induction was found in one-third of the immunized mice. This local response did not correlate with the immune responses measured in the periphery, with the exception of the sacral LN, an LN draining the genital mucosa, where a significant correlation was found. Our data show that the TaqMan method is sensitive enough to detect antigen-specific CD8 T-cell responses in the genital mucosa of individual mice, and this may contribute to elaborate effective vaccines against genital pathogens.
Resumo:
The induction of proteinase inhibitor I synthesis in tomato (Lycopersicon esculentum) leaves in response to wounding is strongly inhibited by diethyldithiocarbamic acid (DIECA). DIECA also inhibits the induction of inhibitor I synthesis by the 18-amino acid polypeptide systemin, polygalacturonic acid (PCA), and linolenic acid, but not by jasmonic acid, suggesting that DIECA interferes with the octadecanoid signaling pathway. DIECA only weakly inhibited tomato lipoxygenase activity, indicating that DIECA action occurred at a step after the conversion of linolenic acid to 13(S)-hydroperoxylinolenic acid (HPOTrE). DIECA was shown to efficiently reduce HPOTrE to 13-hydroxylinolenic acid (HOTrE), which is not a signaling intermediate. Therefore, in vivo, DIECA is likely inhibiting the signaling pathway by shunting HPOTrE to HOTrE, thereby severely reducing the precursor pool leading to cyclization and eventual synthesis of jasmonic acid. Phenidone, an inhibitor of lipoxygenase, inhibited proteinase inhibitor I accumulation in response to wounding, further supporting a role for its substrate, linolenic acid, and its product, HPOTrE, as components of the signal-transduction pathway that induces proteinase inhibitor synthesis in response to wounding, systemin, and PCA.
Resumo:
To study the interaction of T cell receptor with its ligand, a complex of a major histocompatibility complex molecule and a peptide, we derived H-2Kd-restricted cytolytic T lymphocyte clones from mice immunized with a Plasmodium berghei circumsporozoite peptide (PbCS) 252-260 (SYIPSAEKI) derivative containing photoreactive Nepsilon-[4-azidobenzoyl] lysine in place of Pro-255. This residue and Lys-259 were essential parts of the epitope recognized by these clones. Most of the clones expressed BV1S1A1 encoded beta chains along with specific complementary determining region (CDR) 3beta regions but diverse alpha chain sequences. Surprisingly, all T cell receptors were preferentially photoaffinity labeled on the alpha chain. For a representative T cell receptor, the photoaffinity labeled site was located in the Valpha C-strand. Computer modeling suggested the presence of a hydrophobic pocket, which is formed by parts of the Valpha/Jalpha C-, F-, and G-strands and adjacent CDR3alpha residues and structured to be able to avidly bind the photoreactive ligand side chain. We previously found that a T cell receptor specific for a PbCS peptide derivative containing this photoreactive side chain in position 259 similarly used a hydrophobic pocket located between the junctional CDR3 loops. We propose that this nonpolar domain in these locations allow T cell receptors to avidly and specifically bind epitopes containing non-peptidic side chains.