174 resultados para Different types of antennas
Resumo:
STUDY OBJECTIVES: Hemispheric stroke in humans is associated with sleep-wake disturbances and sleep electroencephalogram (EEG) changes. The correlation between these changes and stroke extent remains unclear. In the absence of experimental data, we assessed sleep EEG changes after focal cerebral ischemia of different extensions in mice. DESIGN: Following electrode implantation and baseline sleep-wake EEG recordings, mice were submitted to sham surgery (control group), 30 minutes of intraluminal middle cerebral artery (MCA) occlusion (striatal stroke), or distal MCA electrocoagulation (cortical stroke). One and 12 days after stroke, sleep-wake EEG recordings were repeated. The EEG recorded from the healthy hemisphere was analyzed visually and automatically (fast Fourier analysis) according to established criteria. MEASUREMENTS AND RESULTS: Striatal stroke induced an increase in non-rapid eye movement (NREM) sleep and a reduction of rapid eye movement sleep. These changes were detectable both during the light and the dark phase at day 1 and persisted until day 12 after stroke. Cortical stroke induced a less-marked increase in NREM sleep, which was present only at day 1 and during the dark phase. In cortical stroke, the increase in NREM sleep was associated in the wake EEG power spectra, with an increase in the theta and a reduction in the beta activity. CONCLUSION: Cortical and striatal stroke lead to different sleep-wake EEG changes in mice, which probably reflect variable effects on sleep-promoting and wakefulness-maintaining neuronal networks.
Resumo:
Meta-analysis of prospective studies shows that quantitative ultrasound of the heel using validated devices predicts risk of different types of fracture with similar performance across different devices and in elderly men and women. These predictions are independent of the risk estimates from hip DXA measures.Introduction Clinical utilisation of heel quantitative ultrasound (QUS) depends on its power to predict clinical fractures. This is particularly important in settings that have no access to DXA-derived bone density measurements. We aimed to assess the predictive power of heel QUS for fractures using a meta-analysis approach.Methods We conducted an inverse variance random effects meta-analysis of prospective studies with heel QUS measures at baseline and fracture outcomes in their follow-up. Relative risks (RR) per standard deviation (SD) of different QUS parameters (broadband ultrasound attenuation [BUA], speed of sound [SOS], stiffness index [SI], and quantitative ultrasound index [QUI]) for various fracture outcomes (hip, vertebral, any clinical, any osteoporotic and major osteoporotic fractures) were reported based on study questions.Results Twenty-one studies including 55,164 women and 13,742 men were included in the meta-analysis with a total follow-up of 279,124 person-years. All four QUS parameters were associated with risk of different fracture. For instance, RR of hip fracture for 1 SD decrease of BUA was 1.69 (95% CI 1.43-2.00), SOS was 1.96 (95% CI 1.64-2.34), SI was 2.26 (95%CI 1.71-2.99) and QUI was 1.99 (95% CI 1.49-2.67). There was marked heterogeneity among studies on hip and any clinical fractures but no evidence of publication bias amongst them. Validated devices from different manufacturers predicted fracture risks with similar performance (meta-regression p values > 0.05 for difference of devices). QUS measures predicted fracture with a similar performance in men and women. Meta-analysis of studies with QUS measures adjusted for hip BMD showed a significant and independent association with fracture risk (RR/SD for BUA = 1.34 [95%CI 1.22-1.49]).Conclusions This study confirms that heel QUS, using validated devices, predicts risk of different fracture outcomes in elderly men and women. Further research is needed for more widespread utilisation of the heel QUS in clinical settings across the world.
Resumo:
The treatment of hip osteoarthritis with total hip arthroplasty has continuously evolved since it was first introduced in the sixties. The problem of aseptic loosening of the cemented prostheses, mainly in young active patients, has stimulated two different types of research: on one side the improvement of cementing techniques and on the other side the development of cementless osteoinegrable implants. We discuss the problems of these cementless hip prostheses. Recently published anatomic and biomechanic studies have led to the development of personalized custom femoral stems for each patient. The conception technique and first clinical results are described.
Resumo:
Superantigens (SAgs) are microbial proteins which have potent effects on the immune system. They are presented by major histocompatibility complex (MHC) class II molecules and interact with a large number of T cells expressing specific T cell receptor V beta domains. Encounter of a SAg leads initially to the stimulation and subsequently to the clonal deletion of reactive T cells. SAgs are expressed by a wide variety of microorganisms which use them to exploit the immune system to their own advantage. Bacterial SAgs are exotoxins which are linked to several diseases in humans and animals. A classical example is the toxic shock syndrome in which the massive release of cytokines by SAg-reactive cells is thought to play a major pathogenic role. The best characterized viral SAg is encoded by mouse mammary tumour virus (MMTV) and has proved to have a major influence on the viral life cycle by dramatically increasing the efficiency of viral infection. In this paper, we review the general properties of SAgs and discuss the different types of microorganisms which produce these molecules, with a particular emphasis on the role played by the SAg-induced immune response in the course of microbial infections.
Resumo:
Objective Activation of the renal renin-angiotensin system in patients with diabetes mellitus appears to contribute to the risk of nephropathy. Recently, it has been recognized than an elevation of prorenin in plasma also provides a strong indication of risk of nephropathy. This study was designed to examine renin-angiotensin system control mechanisms in the patient with diabetes mellitus.Methods We enrolled 43 individuals with type 2 diabetes mellitus. All individuals were on a high-salt diet to minimize the contribution of the systemic renin-angiotensin system. After an acute exposure to captopril (25 mg), they were randomized to treatment with either irbesartan (300 mg) or aliskiren (300 mg) for 2 weeks.Results All agents acutely lowered blood pressure and plasma aldosterone, and increased renal plasma flow and glomerular filtration rate. Yet, only captopril and aliskiren acutely increased plasma renin and decreased plasma angiotensin II, whereas irbesartan acutely affected neither renin nor angiotensin II. Plasma renin and angiotensin II subsequently did increase upon chronic irbesartan treatment. When given on day 14, irbesartan and aliskiren again induced the above hemodynamic, renal and adrenal effects, yet without significantly changing plasma renin. Irbesartan at that time did not affect plasma angiotensin II, whereas aliskiren lowered it to almost zero.Conclusion The relative resistance of the renal renin response to acute (irbesartan) and chronic (irbesartan and aliskiren) renin-angiotensin system blockade supports the concept of an activated renal renin-angiotensin system in diabetes, particularly at the level of the juxtaglomerular cell, and implies that diabetic patients might require higher doses of renin-angiotensin system blockers to fully suppress the renal renin-angiotensin system. J Hypertens 29: 2454-2461 (C) 2011 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
The caspase-3-generated RasGAP N-terminal fragment (fragment N) inhibits apoptosis in a Ras-PI3K-Akt-dependent manner. Fragment N protects various cell types, including insulin-secreting cells, against different types of stresses. Whether fragment N exerts a protective role during the development of type 1 diabetes is however not known. Non-obese diabetic (NOD) mice represent a well-known model for spontaneous development of type 1 diabetes that shares similarities with the diseases encountered in humans. To assess the role of fragment N in type 1 diabetes development, a transgene encoding fragment N under the control of the rat insulin promoter (RIP) was back-crossed into the NOD background creating the NOD-RIPN strain. Despite a mosaic expression of fragment N in the beta cell population of NOD-RIPN mice, islets isolated from these mice were more resistant to apoptosis than control NOD islets. Islet lymphocytic infiltration and occurrence of a mild increase in glycemia developed with the same kinetics in both strains. However, the period of time separating the mild increase in glycemia and overt diabetes was significantly longer in NOD-RIPN mice compared to the control NOD mice. There was also a significant decrease in the number of apoptotic beta cells in situ at 16 weeks of age in the NOD-RIPN mice. Fragment N exerts therefore a protective effect on beta cells within the pro-diabetogenic NOD background and this prevents a fast progression from mild to overt diabetes.
Resumo:
After inoculation of Leishmania major, a rapid production of IL-4 by LACK-specific CD4+ T cells has been shown to drive Th2 cell development in susceptible mice i.e. BALB/c and C57BL/6 mice rendered susceptible by neutralization of IFN-gamma at the onset of infection. Here, we showed that peptide AA 156-173 induced an early IL-4 mRNA expression not only in BALB/c mice but also in resistant B10.D2 mice when IFN-gamma is neutralized. Epitope mapping of LACK protein demonstrated that peptide containing AA 293-305 induced early IL-4 mRNA transcripts in susceptible H-2b mice i.e. BALB/b and resistant C57BL/6 mice when IFN-gamma is neutralized. Stringently, the early IL-4 response to the H-2d (AA 156-173) or the H-2b (AA 293-305) epitopes occurred in V beta 4 V alpha 8 CD4+ T cells from either H-2d or H-2b susceptible mice, respectively.
Resumo:
Reliable quantification of the macromolecule signals in short echo-time H-1 MRS spectra is particularly important at high magnetic fields for an accurate quantification of metabolite concentrations (the neurochemical profile) due to effectively increased spectral resolution of the macromolecule components. The purpose of the present study was to assess two approaches of quantification, which take the contribution of macromolecules into account in the quantification step. H-1 spectra were acquired on a 14.1 T/26 cm horizontal scanner on five rats using the ultra-short echo-time SPECIAL (spin echo full intensity acquired localization) spectroscopy sequence. Metabolite concentrations were estimated using LCModel, combined with a simulated basis set of metabolites using published spectral parameters and either the spectrum of macromolecules measured in vivo, using an inversion recovery technique, or baseline simulated by the built-in spline function. The fitted spline function resulted in a smooth approximation of the in vivo macromolecules, but in accordance with previous studies using Subtract-QUEST could not reproduce completely all features of the in vivo spectrum of macromolecules at 14.1 T. As a consequence, the measured macromolecular 'baseline' led to a more accurate and reliable quantification at higher field strengths.
Resumo:
We investigated the role of the number of loci coding for a neutral trait on the release of additive variance for this trait after population bottlenecks. Different bottleneck sizes and durations were tested for various matrices of genotypic values, with initial conditions covering the allele frequency space. We used three different types of matrices. First, we extended Cheverud and Routman's model by defining matrices of "pure" epistasis for three and four independent loci; second, we used genotypic values drawn randomly from uniform, normal, and exponential distributions; and third we used two models of simple metabolic pathways leading to physiological epistasis. For all these matrices of genotypic values except the dominant metabolic pathway, we find that, as the number of loci increases from two to three and four, an increase in the release of additive variance is occurring. The amount of additive variance released for a given set of genotypic values is a function of the inbreeding coefficient, independently of the size and duration of the bottleneck. The level of inbreeding necessary to achieve maximum release in additive variance increases with the number of loci. We find that additive-by-additive epistasis is the type of epistasis most easily converted into additive variance. For a wide range of models, our results show that epistasis, rather than dominance, plays a significant role in the increase of additive variance following bottlenecks.
Resumo:
The aim of the study was to test the hypothesis of the involvement of type II fibres in the V.O (2) slow component phenomenon by using two prior fatiguing protocols on the knee extensor muscles. Nine subjects performed three constant-load cycling exercises at a work rate corresponding to 80 % of their V.O (2) max: (i) preceded by a 20-min fatiguing protocol using electromyostimulation (EMS), (ii) preceded by a 20-min fatiguing protocol using voluntary contractions (VOL), and (iii) without fatiguing protocol (NFP). Voluntary and evoked neuromuscular properties of the knee extensor muscles were tested before (PRE) and after (POST) the two fatiguing protocols. Results show a significant reduction in voluntary force after both fatiguing protocols (-19.9 % and -11.8 %, in EMS and VOL, respectively p<0.01). After EMS, this decrease was greater than after VOL (p<0.05) and was combined with a slackening of muscle contractile properties which was absent after VOL (p<0.05). Regarding the effects on oxygen uptake kinetics, the appearance of the slow component was delayed after EMS and its amplitude was lower than those obtained in VOL and NFP conditions (0.48+/-0.07 vs. 0.75+/-0.09 and 0.69+/-0.08 L . min (-1), respectively; p<0.05). It can thus be concluded that exercises dedicated to preferentially fatiguing type II fibres may alter V.O (2) kinetics.
Resumo:
Auditory spatial deficits occur frequently after hemispheric damage; a previous case report suggested that the explicit awareness of sound positions, as in sound localisation, can be impaired while the implicit use of auditory cues for the segregation of sound objects in noisy environments remains preserved. By assessing systematically patients with a first hemispheric lesion, we have shown that (1) explicit and/or implicit use can be disturbed; (2) impaired explicit vs. preserved implicit use dissociations occur rather frequently; and (3) different types of sound localisation deficits can be associated with preserved implicit use. Conceptually, the dissociation between the explicit and implicit use may reflect the dual-stream dichotomy of auditory processing. Our results speak in favour of systematic assessments of auditory spatial functions in clinical settings, especially when adaptation to auditory environment is at stake. Further, systematic studies are needed to link deficits of explicit vs. implicit use to disability in everyday activities, to design appropriate rehabilitation strategies, and to ascertain how far the explicit and implicit use of spatial cues can be retrained following brain damage.