55 resultados para Data Warehousing Systems
Resumo:
The research considers the problem of spatial data classification using machine learning algorithms: probabilistic neural networks (PNN) and support vector machines (SVM). As a benchmark model simple k-nearest neighbor algorithm is considered. PNN is a neural network reformulation of well known nonparametric principles of probability density modeling using kernel density estimator and Bayesian optimal or maximum a posteriori decision rules. PNN is well suited to problems where not only predictions but also quantification of accuracy and integration of prior information are necessary. An important property of PNN is that they can be easily used in decision support systems dealing with problems of automatic classification. Support vector machine is an implementation of the principles of statistical learning theory for the classification tasks. Recently they were successfully applied for different environmental topics: classification of soil types and hydro-geological units, optimization of monitoring networks, susceptibility mapping of natural hazards. In the present paper both simulated and real data case studies (low and high dimensional) are considered. The main attention is paid to the detection and learning of spatial patterns by the algorithms applied.
Resumo:
Microstructure imaging from diffusion magnetic resonance (MR) data represents an invaluable tool to study non-invasively the morphology of tissues and to provide a biological insight into their microstructural organization. In recent years, a variety of biophysical models have been proposed to associate particular patterns observed in the measured signal with specific microstructural properties of the neuronal tissue, such as axon diameter and fiber density. Despite very appealing results showing that the estimated microstructure indices agree very well with histological examinations, existing techniques require computationally very expensive non-linear procedures to fit the models to the data which, in practice, demand the use of powerful computer clusters for large-scale applications. In this work, we present a general framework for Accelerated Microstructure Imaging via Convex Optimization (AMICO) and show how to re-formulate this class of techniques as convenient linear systems which, then, can be efficiently solved using very fast algorithms. We demonstrate this linearization of the fitting problem for two specific models, i.e. ActiveAx and NODDI, providing a very attractive alternative for parameter estimation in those techniques; however, the AMICO framework is general and flexible enough to work also for the wider space of microstructure imaging methods. Results demonstrate that AMICO represents an effective means to accelerate the fit of existing techniques drastically (up to four orders of magnitude faster) while preserving accuracy and precision in the estimated model parameters (correlation above 0.9). We believe that the availability of such ultrafast algorithms will help to accelerate the spread of microstructure imaging to larger cohorts of patients and to study a wider spectrum of neurological disorders.
Resumo:
The aim of the present study was to establish and compare the durations of the seminiferous epithelium cycles of the common shrew Sorex araneus, which is characterized by a high metabolic rate and multiple paternity, and the greater white-toothed shrew Crocidura russula, which is characterized by a low metabolic rate and a monogamous mating system. Twelve S. araneus males and fifteen C. russula males were injected intraperitoneally with 5-bromodeoxyuridine, and the testes were collected. For cycle length determinations, we applied the classical method of estimation and linear regression as a new method. With regard to variance, and even with a relatively small sample size, the new method seems to be more precise. In addition, the regression method allows the inference of information for every animal tested, enabling comparisons of different factors with cycle lengths. Our results show that not only increased testis size leads to increased sperm production, but it also reduces the duration of spermatogenesis. The calculated cycle lengths were 8.35 days for S. araneus and 12.12 days for C. russula. The data obtained in the present study provide the basis for future investigations into the effects of metabolic rate and mating systems on the speed of spermatogenesis.
Resumo:
Quantitative information from magnetic resonance imaging (MRI) may substantiate clinical findings and provide additional insight into the mechanism of clinical interventions in therapeutic stroke trials. The PERFORM study is exploring the efficacy of terutroban versus aspirin for secondary prevention in patients with a history of ischemic stroke. We report on the design of an exploratory longitudinal MRI follow-up study that was performed in a subgroup of the PERFORM trial. An international multi-centre longitudinal follow-up MRI study was designed for different MR systems employing safety and efficacy readouts: new T2 lesions, new DWI lesions, whole brain volume change, hippocampal volume change, changes in tissue microstructure as depicted by mean diffusivity and fractional anisotropy, vessel patency on MR angiography, and the presence of and development of new microbleeds. A total of 1,056 patients (men and women ≥ 55 years) were included. The data analysis included 3D reformation, image registration of different contrasts, tissue segmentation, and automated lesion detection. This large international multi-centre study demonstrates how new MRI readouts can be used to provide key information on the evolution of cerebral tissue lesions and within the macrovasculature after atherothrombotic stroke in a large sample of patients.
Resumo:
Introduction: A substantial number of patients with cancer suffer considerable pain at some point during their disease, and approximately 25% of cancer patients die in pain. In cases of uncontrolled pain or intolerable side effects, intrathecal drug delivery system (IDDS) is a recognised management option. Indeed, IDDS offer rapid and effective pain relief with less drug side effects compared to oral or parenteral administration. The aim of this study is to retrospectively review our series of cancer patients treated with IDDS. Method: Data was extracted from the institutional neuromodulation registry. Patients with cancer pain treated with IDDS from 01.01.1997 to 30.12.2009 were analysed for subjective improvement, changes in pain intensity (VAS) and survival time after implantation. Measurements were available for a decreasing number of patients as time since baseline increased. Results: During the studied period, 78 patients were implanted with IDDS for cancer pain. The mean survival time was 11.1 months (median: 3.8 months) and 14 patients (18%) were still alive at the end of the studied period. Subjective improvement was graded between 55 and 83% during the first year. Mean VAS during the first year remained lower than VAS at baseline. Discussion: IDDS has been shown to be cost-effective in several studies. Although initial costs of implantation are high, the cost benefits favour analgesia with implanted intrathecal pumps over epidural external systems after 3 to 6 months in cancer patients. Improved survival has been associated with IDDS and in this series both the mean and median survival times were above the cut-off value of three months. The mean subjective improvement was above 50% during the whole first year, suggesting a good efficacy of the treatment, a finding that is consistent with the results from other groups. Changes in pain intensity are difficult to interpret in the context of rapidly progressive disease such as in terminal cancer. However, mean VAS from 1 thru12 months were lower than baseline, suggesting improved pain control with IDDS, or at least a stabilisation of the pain symptoms. Conclusion: Our retrospective series suggests IDDS is effective in intractable cancer pain and we believe it should be considered even in terminally ill patients with limited life expectancies.
Resumo:
OBJECTIVE: To determine if the results of resin-dentin microtensile bond strength (µTBS) is correlated with the outcome parameters of clinical studies on non-retentive Class V restorations. METHODS: Resin-dentin µTBS data were obtained from one test center; the in vitro tests were all performed by the same operator. The µTBS testing was performed 8h after bonding and after 6 months of storing the specimens in water. Pre-test failures (PTFs) of specimens were included in the analysis, attributing them a value of 1MPa. Prospective clinical studies on cervical restorations (Class V) with an observation period of at least 18 months were searched in the literature. The clinical outcome variables were retention loss, marginal discoloration and marginal integrity. Furthermore, an index was formulated to be better able to compare the laboratory and clinical results. Estimates of adhesive effects in a linear mixed model were used to summarize the clinical performance of each adhesive between 12 and 36 months. Spearman correlations between these clinical performances and the µTBS values were calculated subsequently. RESULTS: Thirty-six clinical studies with 15 adhesive/restorative systems for which µTBS data were also available were included in the statistical analysis. In general 3-step and 2-step etch-and-rinse systems showed higher bond strength values than the 2-step/3-step self-etching systems, which, however, produced higher values than the 1-step self-etching and the resin modified glass ionomer systems. Prolonged water storage of specimens resulted in a significant decrease of the mean bond strength values in 5 adhesive systems (Wilcoxon, p<0.05). There was a significant correlation between µTBS values both after 8h and 6 months of storage and marginal discoloration (r=0.54 and r=0.67, respectively). However, the same correlation was not found between µTBS values and the retention rate, clinical index or marginal integrity. SIGNIFICANCE: As µTBS data of adhesive systems, especially after water storage for 6 months, showed a good correlation with marginal discoloration in short-term clinical Class V restorations, longitudinal clinical trials should explore whether early marginal staining is predictive for future retention loss in non-carious cervical restorations.
Resumo:
Automatic environmental monitoring networks enforced by wireless communication technologies provide large and ever increasing volumes of data nowadays. The use of this information in natural hazard research is an important issue. Particularly useful for risk assessment and decision making are the spatial maps of hazard-related parameters produced from point observations and available auxiliary information. The purpose of this article is to present and explore the appropriate tools to process large amounts of available data and produce predictions at fine spatial scales. These are the algorithms of machine learning, which are aimed at non-parametric robust modelling of non-linear dependencies from empirical data. The computational efficiency of the data-driven methods allows producing the prediction maps in real time which makes them superior to physical models for the operational use in risk assessment and mitigation. Particularly, this situation encounters in spatial prediction of climatic variables (topo-climatic mapping). In complex topographies of the mountainous regions, the meteorological processes are highly influenced by the relief. The article shows how these relations, possibly regionalized and non-linear, can be modelled from data using the information from digital elevation models. The particular illustration of the developed methodology concerns the mapping of temperatures (including the situations of Föhn and temperature inversion) given the measurements taken from the Swiss meteorological monitoring network. The range of the methods used in the study includes data-driven feature selection, support vector algorithms and artificial neural networks.
Resumo:
Gait analysis methods to estimate spatiotemporal measures, based on two, three or four gyroscopes attached on lower limbs have been discussed in the literature. The most common approach to reduce the number of sensing units is to simplify the underlying biomechanical gait model. In this study, we propose a novel method based on prediction of movements of thighs from movements of shanks. Datasets from three previous studies were used. Data from the first study (ten healthy subjects and ten with Parkinson's disease) were used to develop and calibrate a system with only two gyroscopes attached on shanks. Data from two other studies (36 subjects with hip replacement, seven subjects with coxarthrosis, and eight control subjects) were used for comparison with the other methods and for assessment of error compared to a motion capture system. Results show that the error of estimation of stride length compared to motion capture with the system with four gyroscopes and our new method based on two gyroscopes was close ( -0.8 ±6.6 versus 3.8 ±6.6 cm). An alternative with three sensing units did not show better results (error: -0.2 ±8.4 cm). Finally, a fourth that also used two units but with a simpler gait model had the highest bias compared to the reference (error: -25.6 ±7.6 cm). We concluded that it is feasible to estimate movements of thighs from movements of shanks to reduce number of needed sensing units from 4 to 2 in context of ambulatory gait analysis.
Resumo:
Résumé La thématique de cette thèse peut être résumée par le célèbre paradoxe de biologie évolutive sur le maintien du polymorphisme face à la sélection et par l'équation du changement de fréquence gamétique au cours du temps dû, à la sélection. La fréquence d'un gamète xi à la génération (t + 1) est: !!!Equation tronquée!!! Cette équation est utilisée pour générer des données utlisée tout au long de ce travail pour 2, 3 et 4 locus dialléliques. Le potentiel de l'avantage de l'hétérozygote pour le maintien du polymorphisme est le sujet de la première partie. La définition commune de l'avantage de l'hétérozygote n'etant applicable qu'a un locus ayant 2 allèles, cet avantage est redéfini pour un système multilocus sur les bases de précédentes études. En utilisant 5 définitions différentes de l'avantage de l'hétérozygote, je montre que cet avantage ne peut être un mécanisme général dans le maintien du polymorphisme sous sélection. L'étude de l'influence de locus non-détectés sur les processus évolutifs, seconde partie de cette thèse, est motivée par les travaux moléculaires ayant pour but de découvrir le nombre de locus codant pour un trait. La plupart de ces études sous-estiment le nombre de locus. Je montre que des locus non-détectés augmentent la probabilité d'observer du polymorphisme sous sélection. De plus, les conclusions sur les facteurs de maintien du polymorphisme peuvent être trompeuses si tous les locus ne sont pas détectés. Dans la troisième partie, je m'intéresse à la valeur attendue de variance additive après un goulot d'étranglement pour des traits sélectionés. Une études précédente montre que le niveau de variance additive après goulot d'étranglement augmente avec le nombre de loci. Je montre que le niveau de variance additive après un goulot d'étranglement augmente (comparé à des traits neutres), mais indépendamment du nombre de loci. Par contre, le taux de recombinaison a une forte influence, entre autre en regénérant les gamètes disparus suite au goulot d'étranglement. La dernière partie de ce travail de thèse décrit un programme pour le logiciel de statistique R. Ce programme permet d'itérer l'équation ci-dessus en variant les paramètres de sélection, recombinaison et de taille de populations pour 2, 3 et 4 locus dialléliques. Cette thèse montre qu'utiliser un système multilocus permet d'obtenir des résultats non-conformes à ceux issus de systèmes rnonolocus (la référence en génétique des populations). Ce programme ouvre donc d'intéressantes perspectives en génétique des populations. Abstract The subject of this PhD thesis can be summarized by one famous paradox of evolu-tionary biology: the maintenance of polymorphism in the face of selection, and one classical equation of theoretical population genetics: the changes in gametic frequencies due to selection and recombination. The frequency of gamete xi at generation (t + 1) is given by: !!! Truncated equation!!! This equation is used to generate data on selection at two, three, and four diallelic loci for the different parts of this work. The first part focuses on the potential of heterozygote advantage to maintain genetic polymorphism. Results of previous studies are used to (re)define heterozygote advantage for multilocus systems, since the classical definition is for one diallelic locus. I use 5 different definitions of heterozygote advantage. And for these five definitions, I show that heterozygote advantage is not a general mechanism for the maintenance of polymorphism. The study of the influence of undetected loci on evolutionary processes (second part of this work) is motivated by molecular works which aim at discovering the loci coding for a trait. For most of these works, some coding loci remains undetected. I show that undetected loci increases the probability of maintaining polymorphism under selection. In addition, conclusions about the factor that maintain polymorphism can be misleading if not all loci are considered. This is, therefore, only when all loci are detected that exact conclusions on the level of maintained polymorphism or on the factor(s) that maintain(s) polymorphism could be drawn. In the third part, the focus is on the expected release of additive genetic variance after bottleneck for selected traits. A previous study shows that the expected release of additive variance increases with an increase in the number of loci. I show that the expected release of additive variance after bottleneck increases for selected traits (compared with neutral), but this increase is not a function of the number of loci, but function of the recombination rate. Finally, the last part of this PhD thesis is a description of a package for the statistical software R that implements the Equation given above. It allows to generate data for different scenario regarding selection, recombination, and population size. This package opens perspectives for the theoretical population genetics that mainly focuses on one locus, while this work shows that increasing the number of loci leads not necessarily to straightforward results.
Resumo:
Sustainable resource use is one of the most important environmental issues of our times. It is closely related to discussions on the 'peaking' of various natural resources serving as energy sources, agricultural nutrients, or metals indispensable in high-technology applications. Although the peaking theory remains controversial, it is commonly recognized that a more sustainable use of resources would alleviate negative environmental impacts related to resource use. In this thesis, sustainable resource use is analysed from a practical standpoint, through several different case studies. Four of these case studies relate to resource metabolism in the Canton of Geneva in Switzerland: the aim was to model the evolution of chosen resource stocks and flows in the coming decades. The studied resources were copper (a bulk metal), phosphorus (a vital agricultural nutrient), and wood (a renewable resource). In addition, the case of lithium (a critical metal) was analysed briefly in a qualitative manner and in an electric mobility perspective. In addition to the Geneva case studies, this thesis includes a case study on the sustainability of space life support systems. Space life support systems are systems whose aim is to provide the crew of a spacecraft with the necessary metabolic consumables over the course of a mission. Sustainability was again analysed from a resource use perspective. In this case study, the functioning of two different types of life support systems, ARES and BIORAT, were evaluated and compared; these systems represent, respectively, physico-chemical and biological life support systems. Space life support systems could in fact be used as a kind of 'laboratory of sustainability' given that they represent closed and relatively simple systems compared to complex and open terrestrial systems such as the Canton of Geneva. The chosen analysis method used in the Geneva case studies was dynamic material flow analysis: dynamic material flow models were constructed for the resources copper, phosphorus, and wood. Besides a baseline scenario, various alternative scenarios (notably involving increased recycling) were also examined. In the case of space life support systems, the methodology of material flow analysis was also employed, but as the data available on the dynamic behaviour of the systems was insufficient, only static simulations could be performed. The results of the case studies in the Canton of Geneva show the following: were resource use to follow population growth, resource consumption would be multiplied by nearly 1.2 by 2030 and by 1.5 by 2080. A complete transition to electric mobility would be expected to only slightly (+5%) increase the copper consumption per capita while the lithium demand in cars would increase 350 fold. For example, phosphorus imports could be decreased by recycling sewage sludge or human urine; however, the health and environmental impacts of these options have yet to be studied. Increasing the wood production in the Canton would not significantly decrease the dependence on wood imports as the Canton's production represents only 5% of total consumption. In the comparison of space life support systems ARES and BIORAT, BIORAT outperforms ARES in resource use but not in energy use. However, as the systems are dimensioned very differently, it remains questionable whether they can be compared outright. In conclusion, the use of dynamic material flow analysis can provide useful information for policy makers and strategic decision-making; however, uncertainty in reference data greatly influences the precision of the results. Space life support systems constitute an extreme case of resource-using systems; nevertheless, it is not clear how their example could be of immediate use to terrestrial systems.
Resumo:
Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.
Resumo:
Genotypic frequencies at codominant marker loci in population samples convey information on mating systems. A classical way to extract this information is to measure heterozygote deficiencies (FIS) and obtain the selfing rate s from FIS = s/(2 - s), assuming inbreeding equilibrium. A major drawback is that heterozygote deficiencies are often present without selfing, owing largely to technical artefacts such as null alleles or partial dominance. We show here that, in the absence of gametic disequilibrium, the multilocus structure can be used to derive estimates of s independent of FIS and free of technical biases. Their statistical power and precision are comparable to those of FIS, although they are sensitive to certain types of gametic disequilibria, a bias shared with progeny-array methods but not FIS. We analyse four real data sets spanning a range of mating systems. In two examples, we obtain s = 0 despite positive FIS, strongly suggesting that the latter are artefactual. In the remaining examples, all estimates are consistent. All the computations have been implemented in a open-access and user-friendly software called rmes (robust multilocus estimate of selfing) available at http://ftp.cefe.cnrs.fr, and can be used on any multilocus data. Being able to extract the reliable information from imperfect data, our method opens the way to make use of the ever-growing number of published population genetic studies, in addition to the more demanding progeny-array approaches, to investigate selfing rates.
Resumo:
The Polochic-Motagua fault systems (PMFS) are part of the sinistral transform boundary between the North American and Caribbean plates. To the west, these systems interact with the subduction zone of the Cocos plate, forming a subduction-subduction-transform triple junction. The North American plate moves westward relative to the Caribbean plate. This movement does not affect the geometry of the subducted Cocos plate, which implies that deformation is accommodated entirely in the two overriding plates. Structural data, fault kinematic analysis, and geomorphic observations provide new elements that help to understand the late Cenozoic evolution of this triple junction. In the Miocene, extension and shortening occurred south and north of the Motagua fault, respectively. This strain regime migrated northward to the Polochic fault after the late Miocene. This shift is interpreted as a ``pull-up'' of North American blocks into the Caribbean realm. To the west, the PMFS interact with a trench-parallel fault zone that links the Tonala fault to the Jalpatagua fault. These faults bound a fore-arc sliver that is shared by the two overriding plates. We propose that the dextral Jalpatagua fault merges with the sinistral PMFS, leaving behind a suturing structure, the Tonala fault. This tectonic ``zipper'' allows the migration of the triple junction. As a result, the fore-arc sliver comes into contact with the North American plate and helps to maintain a linear subduction zone along the trailing edge of the Caribbean plate. All these processes currently make the triple junction increasingly diffuse as it propagates eastward and inland within both overriding plates.
Resumo:
The chemical and isotopic composition of fumarolic gases emitted from Nisyros Volcano, Greece, and of a single gas sample from Vesuvio, Italy, was investigated in order to determine the origin of methane (CH,) within two subduction-related magmatic-hydrothermal environments. Apparent temperatures derived from carbon isotope partitioning between CH4 and CO2 of around 340degreesC for Nisyros and 470degreesC for Vesuvio correlate well with aquifer temperatures as measured directly and/or inferred from compositional data using the H2O-H-2-CO2-CO-CH4 geothermometer. Thermodynamic modeling reveals chemical equilibrium between CH4, CO2 and H2O implying that carbon isotope partitioning between CO2 and CH, in both systems is controlled by aquifer temperature. N-2/(3) He and CH4/(3) He ratios of Nisyros fumarolic gases are unusually low for subduction zone gases and correspond to those of midoceanic ridge environments. Accordingly, CH4 may have been primarily generated through the reduction of CO, by H, in the absence of any organic matter following a Fischer-Tropsch-type reaction. However, primary occurrence of minor amounts of thermogenic CH4 and subsequent re-equilibration with co-existing CO2 cannot be ruled out entirely- CO2/He-3 ratios and delta(13)C(CO2) values imply that the evolved CO2 either derives from a metasomatized mantle or is a mixture between two components, one outgassing from an unaltered mantle and the other released by thermal breakdown of marine carbonates. The latter may contain traces of organic matter possibly decomposing to CH4 during thermometamorphism. Copyright (C) 2004 Elsevier Ltd.
Resumo:
Les plantes sont essentielles pour les sociétés humaines. Notre alimentation quotidienne, les matériaux de constructions et les sources énergétiques dérivent de la biomasse végétale. En revanche, la compréhension des multiples aspects développementaux des plantes est encore peu exploitée et représente un sujet de recherche majeur pour la science. L'émergence des technologies à haut débit pour le séquençage de génome à grande échelle ou l'imagerie de haute résolution permet à présent de produire des quantités énormes d'information. L'analyse informatique est une façon d'intégrer ces données et de réduire la complexité apparente vers une échelle d'abstraction appropriée, dont la finalité est de fournir des perspectives de recherches ciblées. Ceci représente la raison première de cette thèse. En d'autres termes, nous appliquons des méthodes descriptives et prédictives combinées à des simulations numériques afin d'apporter des solutions originales à des problèmes relatifs à la morphogénèse à l'échelle de la cellule et de l'organe. Nous nous sommes fixés parmi les objectifs principaux de cette thèse d'élucider de quelle manière l'interaction croisée des phytohormones auxine et brassinosteroïdes (BRs) détermine la croissance de la cellule dans la racine du méristème apical d'Arabidopsis thaliana, l'organisme modèle de référence pour les études moléculaires en plantes. Pour reconstruire le réseau de signalement cellulaire, nous avons extrait de la littérature les informations pertinentes concernant les relations entre les protéines impliquées dans la transduction des signaux hormonaux. Le réseau a ensuite été modélisé en utilisant un formalisme logique et qualitatif pour pallier l'absence de données quantitatives. Tout d'abord, Les résultats ont permis de confirmer que l'auxine et les BRs agissent en synergie pour contrôler la croissance de la cellule, puis, d'expliquer des observations phénotypiques paradoxales et au final, de mettre à jour une interaction clef entre deux protéines dans la maintenance du méristème de la racine. Une étude ultérieure chez la plante modèle Brachypodium dystachion (Brachypo- dium) a révélé l'ajustement du réseau d'interaction croisée entre auxine et éthylène par rapport à Arabidopsis. Chez ce dernier, interférer avec la biosynthèse de l'auxine mène à la formation d'une racine courte. Néanmoins, nous avons isolé chez Brachypodium un mutant hypomorphique dans la biosynthèse de l'auxine qui affiche une racine plus longue. Nous avons alors conduit une analyse morphométrique qui a confirmé que des cellules plus anisotropique (plus fines et longues) sont à l'origine de ce phénotype racinaire. Des analyses plus approfondies ont démontré que la différence phénotypique entre Brachypodium et Arabidopsis s'explique par une inversion de la fonction régulatrice dans la relation entre le réseau de signalisation par l'éthylène et la biosynthèse de l'auxine. L'analyse morphométrique utilisée dans l'étude précédente exploite le pipeline de traitement d'image de notre méthode d'histologie quantitative. Pendant la croissance secondaire, la symétrie bilatérale de l'hypocotyle est remplacée par une symétrie radiale et une organisation concentrique des tissus constitutifs. Ces tissus sont initialement composés d'une douzaine de cellules mais peuvent aisément atteindre des dizaines de milliers dans les derniers stades du développement. Cette échelle dépasse largement le seuil d'investigation par les moyens dits 'traditionnels' comme l'imagerie directe de tissus en profondeur. L'étude de ce système pendant cette phase de développement ne peut se faire qu'en réalisant des coupes fines de l'organe, ce qui empêche une compréhension des phénomènes cellulaires dynamiques sous-jacents. Nous y avons remédié en proposant une stratégie originale nommée, histologie quantitative. De fait, nous avons extrait l'information contenue dans des images de très haute résolution de sections transverses d'hypocotyles en utilisant un pipeline d'analyse et de segmentation d'image à grande échelle. Nous l'avons ensuite combiné avec un algorithme de reconnaissance automatique des cellules. Cet outil nous a permis de réaliser une description quantitative de la progression de la croissance secondaire révélant des schémas développementales non-apparents avec une inspection visuelle classique. La formation de pôle de phloèmes en structure répétée et espacée entre eux d'une longueur constante illustre les bénéfices de notre approche. Par ailleurs, l'exploitation approfondie de ces résultats a montré un changement de croissance anisotropique des cellules du cambium et du phloème qui semble en phase avec l'expansion du xylème. Combinant des outils génétiques et de la modélisation biomécanique, nous avons démontré que seule la croissance plus rapide des tissus internes peut produire une réorientation de l'axe de croissance anisotropique des tissus périphériques. Cette prédiction a été confirmée par le calcul du ratio des taux de croissance du xylème et du phloème au cours de développement secondaire ; des ratios élevés sont effectivement observés et concomitant à l'établissement progressif et tangentiel du cambium. Ces résultats suggèrent un mécanisme d'auto-organisation établi par un gradient de division méristématique qui génèrent une distribution de contraintes mécaniques. Ceci réoriente la croissance anisotropique des tissus périphériques pour supporter la croissance secondaire. - Plants are essential for human society, because our daily food, construction materials and sustainable energy are derived from plant biomass. Yet, despite this importance, the multiple developmental aspects of plants are still poorly understood and represent a major challenge for science. With the emergence of high throughput devices for genome sequencing and high-resolution imaging, data has never been so easy to collect, generating huge amounts of information. Computational analysis is one way to integrate those data and to decrease the apparent complexity towards an appropriate scale of abstraction with the aim to eventually provide new answers and direct further research perspectives. This is the motivation behind this thesis work, i.e. the application of descriptive and predictive analytics combined with computational modeling to answer problems that revolve around morphogenesis at the subcellular and organ scale. One of the goals of this thesis is to elucidate how the auxin-brassinosteroid phytohormone interaction determines the cell growth in the root apical meristem of Arabidopsis thaliana (Arabidopsis), the plant model of reference for molecular studies. The pertinent information about signaling protein relationships was obtained through the literature to reconstruct the entire hormonal crosstalk. Due to a lack of quantitative information, we employed a qualitative modeling formalism. This work permitted to confirm the synergistic effect of the hormonal crosstalk on cell elongation, to explain some of our paradoxical mutant phenotypes and to predict a novel interaction between the BREVIS RADIX (BRX) protein and the transcription factor MONOPTEROS (MP),which turned out to be critical for the maintenance of the root meristem. On the same subcellular scale, another study in the monocot model Brachypodium dystachion (Brachypodium) revealed an alternative wiring of auxin-ethylene crosstalk as compared to Arabidopsis. In the latter, increasing interference with auxin biosynthesis results in progressively shorter roots. By contrast, a hypomorphic Brachypodium mutant isolated in this study in an enzyme of the auxin biosynthesis pathway displayed a dramatically longer seminal root. Our morphometric analysis confirmed that more anisotropic cells (thinner and longer) are principally responsible for the mutant root phenotype. Further characterization pointed towards an inverted regulatory logic in the relation between ethylene signaling and auxin biosynthesis in Brachypodium as compared to Arabidopsis, which explains the phenotypic discrepancy. Finally, the morphometric analysis of hypocotyl secondary growth that we applied in this study was performed with the image-processing pipeline of our quantitative histology method. During its secondary growth, the hypocotyl reorganizes its primary bilateral symmetry to a radial symmetry of highly specialized tissues comprising several thousand cells, starting with a few dozens. However, such a scale only permits observations in thin cross-sections, severely hampering a comprehensive analysis of the morphodynamics involved. Our quantitative histology strategy overcomes this limitation. We acquired hypocotyl cross-sections from tiled high-resolution images and extracted their information content using custom high-throughput image processing and segmentation. Coupled with an automated cell type recognition algorithm, it allows precise quantitative characterization of vascular development and reveals developmental patterns that were not evident from visual inspection, for example the steady interspace distance of the phloem poles. Further analyses indicated a change in growth anisotropy of cambial and phloem cells, which appeared in phase with the expansion of xylem. Combining genetic tools and computational modeling, we showed that the reorientation of growth anisotropy axis of peripheral tissue layers only occurs when the growth rate of central tissue is higher than the peripheral one. This was confirmed by the calculation of the ratio of the growth rate xylem to phloem throughout secondary growth. High ratios are indeed observed and concomitant with the homogenization of cambium anisotropy. These results suggest a self-organization mechanism, promoted by a gradient of division in the cambium that generates a pattern of mechanical constraints. This, in turn, reorients the growth anisotropy of peripheral tissues to sustain the secondary growth.