193 resultados para Cost Modelling
Resumo:
Altitudinal tree lines are mainly constrained by temperature, but can also be influenced by factors such as human activity, particularly in the European Alps, where centuries of agricultural use have affected the tree-line. Over the last decades this trend has been reversed due to changing agricultural practices and land-abandonment. We aimed to combine a statistical land-abandonment model with a forest dynamics model, to take into account the combined effects of climate and human land-use on the Alpine tree-line in Switzerland. Land-abandonment probability was expressed by a logistic regression function of degree-day sum, distance from forest edge, soil stoniness, slope, proportion of employees in the secondary and tertiary sectors, proportion of commuters and proportion of full-time farms. This was implemented in the TreeMig spatio-temporal forest model. Distance from forest edge and degree-day sum vary through feed-back from the dynamics part of TreeMig and climate change scenarios, while the other variables remain constant for each grid cell over time. The new model, TreeMig-LAb, was tested on theoretical landscapes, where the variables in the land-abandonment model were varied one by one. This confirmed the strong influence of distance from forest and slope on the abandonment probability. Degree-day sum has a more complex role, with opposite influences on land-abandonment and forest growth. TreeMig-LAb was also applied to a case study area in the Upper Engadine (Swiss Alps), along with a model where abandonment probability was a constant. Two scenarios were used: natural succession only (100% probability) and a probability of abandonment based on past transition proportions in that area (2.1% per decade). The former showed new forest growing in all but the highest-altitude locations. The latter was more realistic as to numbers of newly forested cells, but their location was random and the resulting landscape heterogeneous. Using the logistic regression model gave results consistent with observed patterns of land-abandonment: existing forests expanded and gaps closed, leading to an increasingly homogeneous landscape.
Resumo:
Two nonmutually exclusive hypotheses can explain why divorce is an adaptive strategy to improve reproductive success. Under the 'better option hypothesis', only one of the two partners initiates divorce to secure a higher-quality partner and increases reproductive success after divorce. Under the 'incompatibility hypothesis', partners are incompatible and hence they may both increase reproductive success after divorce. In a long-term study of the barn owl (Tyto alba), we address the question of whether one or the two partners derive fitness benefits by divorcing. Our results support the hypothesis that divorce is adaptive: after a poor reproductive season, at least one of the two divorcees increase breeding success up to the level of faithful pairs. By breeding more often together, faithful pairs improve coordination and thereby gain in their efficiency to produce successful fledglings. Males would divorce to obtain a compatible mate rather than a mate of higher quality: a heritable melanin-based signal of female quality did not predict divorce (indicating that female absolute quality may not be the cause of divorce), but the new mate of divorced males was less melanic than their previous mate. This suggests that, at least for males, a cost of divorce may be to secure a lower-quality but compatible mate. The better option hypothesis could not be formally rejected, as only one of the two divorcing partners commonly succeeded in obtaining a higher reproductive success after divorce. In conclusion, incompatible partners divorce to restore reproductive success, and by breeding more often together, faithful partners improve coordination.
Resumo:
Reliable quantification of the macromolecule signals in short echo-time H-1 MRS spectra is particularly important at high magnetic fields for an accurate quantification of metabolite concentrations (the neurochemical profile) due to effectively increased spectral resolution of the macromolecule components. The purpose of the present study was to assess two approaches of quantification, which take the contribution of macromolecules into account in the quantification step. H-1 spectra were acquired on a 14.1 T/26 cm horizontal scanner on five rats using the ultra-short echo-time SPECIAL (spin echo full intensity acquired localization) spectroscopy sequence. Metabolite concentrations were estimated using LCModel, combined with a simulated basis set of metabolites using published spectral parameters and either the spectrum of macromolecules measured in vivo, using an inversion recovery technique, or baseline simulated by the built-in spline function. The fitted spline function resulted in a smooth approximation of the in vivo macromolecules, but in accordance with previous studies using Subtract-QUEST could not reproduce completely all features of the in vivo spectrum of macromolecules at 14.1 T. As a consequence, the measured macromolecular 'baseline' led to a more accurate and reliable quantification at higher field strengths.
Resumo:
In this paper, a phenomenologically motivated magneto-mechanically coupled finite strain elastic framework for simulating the curing process of polymers in the presence of a magnetic load is proposed. This approach is in line with previous works by Hossain and co-workers on finite strain curing modelling framework for the purely mechanical polymer curing (Hossain et al., 2009b). The proposed thermodynamically consistent approach is independent of any particular free energy function that may be used for the fully-cured magneto-sensitive polymer modelling, i.e. any phenomenological or micromechanical-inspired free energy can be inserted into the main modelling framework. For the fabrication of magneto-sensitive polymers, micron-size ferromagnetic particles are mixed with the liquid matrix material in the uncured stage. The particles align in a preferred direction with the application of a magnetic field during the curing process. The polymer curing process is a complex (visco) elastic process that transforms a fluid to a solid with time. Such transformation process is modelled by an appropriate constitutive relation which takes into account the temporal evolution of the material parameters appearing in a particular energy function. For demonstration in this work, a frequently used energy function is chosen, i.e. the classical Mooney-Rivlin free energy enhanced by coupling terms. Several representative numerical examples are demonstrated that prove the capability of our approach to correctly capture common features in polymers undergoing curing processes in the presence of a magneto-mechanical coupled load.
Resumo:
OBJECTIVES: To assess whether patients' characteristics and healthcare resources consumption and costs were different between native and migrant populations in Switzerland. METHODS: All adult patients followed-up in the Swiss HIV-cohort study in our institution during 2000-2003 were considered. Patients' characteristics were retrieved from the cohort database. Hospital and outpatient resource use were extracted from individual charts and valued with 2002 tariffs. RESULTS: The 66 migrants were younger (29 +/- 8 years versus 37 +/- 11, p < 0.001), less often of male gender (38 % versus 70 %, p < 0.001), predominantly infected via heterosexual contact (87 % versus 52 %, p < 0.01), with lower mean CD4 level at enrollment (326 +/- 235 versus 437 +/- 305, p = 0.002) than their 200 native counterparts. Migrants had fewer hospitalizations, more frequent outpatient visits, laboratory tests, and lower total cost of care per year of follow-up (<euro> 2'215 +/- 4'206 versus 4'155 +/- 12'304, p = 0.037). Resource use and costs were significantly higher in people with < 200 CD4 cell counts in both groups. CONCLUSIONS: Migrant population had more advanced disease, more outpatient visits but less hospitalizations, resulting in lower costs of care when compared with native population.
Resumo:
Debris flow hazard modelling at medium (regional) scale has been subject of various studies in recent years. In this study, hazard zonation was carried out, incorporating information about debris flow initiation probability (spatial and temporal), and the delimitation of the potential runout areas. Debris flow hazard zonation was carried out in the area of the Consortium of Mountain Municipalities of Valtellina di Tirano (Central Alps, Italy). The complexity of the phenomenon, the scale of the study, the variability of local conditioning factors, and the lacking data limited the use of process-based models for the runout zone delimitation. Firstly, a map of hazard initiation probabilities was prepared for the study area, based on the available susceptibility zoning information, and the analysis of two sets of aerial photographs for the temporal probability estimation. Afterwards, the hazard initiation map was used as one of the inputs for an empirical GIS-based model (Flow-R), developed at the University of Lausanne (Switzerland). An estimation of the debris flow magnitude was neglected as the main aim of the analysis was to prepare a debris flow hazard map at medium scale. A digital elevation model, with a 10 m resolution, was used together with landuse, geology and debris flow hazard initiation maps as inputs of the Flow-R model to restrict potential areas within each hazard initiation probability class to locations where debris flows are most likely to initiate. Afterwards, runout areas were calculated using multiple flow direction and energy based algorithms. Maximum probable runout zones were calibrated using documented past events and aerial photographs. Finally, two debris flow hazard maps were prepared. The first simply delimits five hazard zones, while the second incorporates the information about debris flow spreading direction probabilities, showing areas more likely to be affected by future debris flows. Limitations of the modelling arise mainly from the models applied and analysis scale, which are neglecting local controlling factors of debris flow hazard. The presented approach of debris flow hazard analysis, associating automatic detection of the source areas and a simple assessment of the debris flow spreading, provided results for consequent hazard and risk studies. However, for the validation and transferability of the parameters and results to other study areas, more testing is needed.
Resumo:
The paper describes how to integrate audience measurement and site visibility as the main research approaches in outdoor advertising research in a single concept. Details are portrayed on how GPS is used on a large scale in Switzerland for mobility analysis and audience measurement. Furthermore, the development of a software solution is introduced that allows the integration of all mobility data and poster location information. Finally a model and its results is presented for the calculation of coverage of individual poster campaigns and for the calculation of the number of contacts generated by each billboard.
Resumo:
Research has demonstrated that landscape or watershed scale processes can influence instream aquatic ecosystems, in terms of the impacts of delivery of fine sediment, solutes and organic matter. Testing such impacts upon populations of organisms (i.e. at the catchment scale) has not proven straightforward and differences have emerged in the conclusions reached. This is: (1) partly because different studies have focused upon different scales of enquiry; but also (2) because the emphasis upon upstream land cover has rarely addressed the extent to which such land covers are hydrologically connected, and hence able to deliver diffuse pollution, to the drainage network However, there is a third issue. In order to develop suitable hydrological models, we need to conceptualise the process cascade. To do this, we need to know what matters to the organism being impacted by the hydrological system, such that we can identify which processes need to be modelled. Acquiring such knowledge is not easy, especially for organisms like fish that might occupy very different locations in the river over relatively short periods of time. However, and inevitably, hydrological modellers have started by building up piecemeal the aspects of the problem that we think matter to fish. Herein, we report two developments: (a) for the case of sediment associated diffuse pollution from agriculture, a risk-based modelling framework, SCIMAP, has been developed, which is distinct because it has an explicit focus upon hydrological connectivity; and (b) we use spatially distributed ecological data to infer the processes and the associated process parameters that matter to salmonid fry. We apply the model to spatially distributed salmon and fry data from the River Eden, Cumbria, England. The analysis shows, quite surprisingly, that arable land covers are relatively unimportant as drivers of fry abundance. What matters most is intensive pasture, a land cover that could be associated with a number of stressors on salmonid fry (e.g. pesticides, fine sediment) and which allows us to identify a series of risky field locations, where this land cover is readily connected to the river system by overland flow. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This study tested whether the lower economy of walking in healthy elderly subjects is due to greater gait instability. We compared the energy cost of walking and gait instability (assessed by stride to stride changes in the stride time) in octogenarians (G80, n = 10), 65-yr-olds (G65, n = 10), and young controls (G25, n = 10) walking on a treadmill at six different speeds. The energy cost of walking was higher for G80 than for G25 across the different walking speeds (P < 0.05). Stride time variability at preferred walking speed was significantly greater in G80 (2.31 +/- 0.68%) and G65 (1.93 +/- 0.39%) compared with G25 (1.40 +/- 0.30%; P < 0.05). There was no significant correlation between gait instability and energy cost of walking at preferred walking speed. These findings demonstrated greater energy expenditure in healthy elderly subjects while walking and increased gait instability. However, no relationship was noted between these two variables. The increase in energy cost is probably multifactorial, and our results suggest that gait instability is probably not the main contributing factor in this population. We thus concluded that other mechanisms, such as the energy expenditure associated with walking movements and related to mechanical work, or neuromuscular factors, are more likely involved in the higher cost of walking in elderly people.
Resumo:
Aim, Location Although the alpine mouse Apodemus alpicola has been given species status since 1989, no distribution map has ever been constructed for this endemic alpine rodent in Switzerland. Based on redetermined museum material and using the Ecological-Niche Factor Analysis (ENFA), habitat-suitability maps were computed for A. alpicola, and also for the co-occurring A. flavicollis and A. sylvaticus. Methods In the particular case of habitat suitability models, classical approaches (GLMs, GAMs, discriminant analysis, etc.) generally require presence and absence data. The presence records provided by museums can clearly give useful information about species distribution and ecology and have already been used for knowledge-based mapping. In this paper, we apply the ENFA which requires only presence data, to build a habitat-suitability map of three species of Apodemus on the basis of museum skull collections. Results Interspecific niche comparisons showed that A. alpicola is very specialized concerning habitat selection, meaning that its habitat differs unequivocally from the average conditions in Switzerland, while both A. flavicollis and A. sylvaticus could be considered as 'generalists' in the study area. Main conclusions Although an adequate sampling design is the best way to collect ecological data for predictive modelling, this is a time and money consuming process and there are cases where time is simply not available, as for instance with endangered species conservation. On the other hand, museums, herbariums and other similar institutions are treasuring huge presence data sets. By applying the ENFA to such data it is possible to rapidly construct a habitat suitability model. The ENFA method not only provides two key measurements regarding the niche of a species (i.e. marginality and specialization), but also has ecological meaning, and allows the scientist to compare directly the niches of different species.
Resumo:
To evaluate whether an activity monitor based on body acceleration measurement can accurately assess the energy cost of the human locomotion, 12 subjects walked a combination of three different speeds (preferred speed +/- 1 km/h) and seven slopes (-15 to +15% by steps of 5%) on a treadmill. Body accelerations were recorded using a triaxial accelerometer attached to the low back. The mean of the integral of the vector magnitude (norm) of the accelerations (mIAN) was calculated. VO2 was measured using continuous indirect calorimetry. When the results were separately analysed for each incline, mIAN was correlated to VO2 (average r = 0.87, p<0.001, n = 36). VO2 was not significantly correlated to mIAN when data were globally analysed (n = 252). Large relative errors occurred when predicted VO2 (estimated from data of level walking) was compared with measured VO2 for different inclines (-53% at +15% incline, to +55% at -15% incline). It is concluded that without an external measurement of the slope, the standard method of analysis of body accelerations cannot accurately predict the energy cost of uphill or downhill walking.