36 resultados para Contraction and restructuring politics
Resumo:
The artificial activation of the heart modifies the mechanics of contraction and relaxation. While only little basic research has been addressed to this question, clinical observations showed that for hypertrophic as well as dilated cardiomyopathies appropriate pacing techniques can be useful. Pacing can influence the activation sequence. The spread out from a single site is slow, and so hypercontractility deminshed. With the use of multiple electrodes, two atrial and/or two ventricular, conduction delays in the atria or ventricles can be eliminated. Synchronisation of the cardiac activation has an anti-arrhythmic and positiv inotropic effect. This may lead to new indications for pacemakers or better to be named cardiac synchronisers.
Resumo:
Although the T-cell receptor αδ (TCRαδ) locus harbours large libraries of variable (TRAV) and junctional (TRAJ) gene segments, according to previous studies the TCRα chain repertoire is of limited diversity due to restrictions imposed by sequential coordinate TRAV-TRAJ recombinations. By sequencing tens of millions of TCRα chain transcripts from naive mouse CD8(+) T cells, we observed a hugely diverse repertoire, comprising nearly all possible TRAV-TRAJ combinations. Our findings are not compatible with sequential coordinate gene recombination, but rather with a model in which contraction and DNA looping in the TCRαδ locus provide equal access to TRAV and TRAJ gene segments, similarly to that demonstrated for IgH gene recombination. Generation of the observed highly diverse TCRα chain repertoire necessitates deletion of failed attempts by thymic-positive selection and is essential for the formation of highly diverse TCRαβ repertoires, capable of providing good protective immunity.
Resumo:
BACKGROUND: The activity of melanopsin containing intrinsically photosensitive ganglion retinal cells (ipRGC) can be assessed by a means of pupil responses to bright blue (appr.480 nm) light. Due to age related factors in the eye, particularly, structural changes of the lens, less light reaches retina. The aim of this study was to examine how age and in vivo measured lens transmission of blue light might affect pupil light responses, in particular, mediated by the ipRGC. METHODS: Consensual pupil responses were explored in 44 healthy subjects aged between 26 and 68 years. A pupil response was recorded to a continuous 20 s light stimulus of 660 nm (red) or 470 nm (blue) both at 300 cd/m2 intensity (14.9 and 14.8 log photons/cm2/s, respectively). Additional recordings were performed using four 470 nm stimulus intensities of 3, 30, 100 and 300 cd/m2. The baseline pupil size was measured in darkness and results were adjusted for the baseline pupil and gender. The main outcome parameters were maximal and sustained pupil contraction amplitudes and the postillumination response assessed as area under the curve (AUC) over two time-windows: early (0-10 s after light termination) and late (10-30 s after light termination). Lens transmission was measured with an ocular fluorometer. RESULTS: The sustained pupil contraction and the early poststimulus AUC correlated positively with age (p=0.02, p=0.0014, respectively) for the blue light stimulus condition only.The maximal pupil contraction amplitude did not correlate to age either for bright blue or red light stimulus conditions.Lens transmission decreased linearly with age (p<0.0001). The pupil response was stable or increased with decreasing transmission, though only significantly for the early poststimulus AUC to 300 cd/m2 light (p=0.02). CONCLUSIONS: Age did not reduce, but rather enhance pupil responses mediated by ipRGC. The age related decrease of blue light transmission led to similar results, however, the effect of age was greater on these pupil responses than that of the lens transmission. Thus there must be other age related factors such as lens scatter and/or adaptive processes influencing the ipRGC mediated pupil response enhancement observed with advancing age.
Resumo:
Coronary magnetic resonance angiography (MRA) is a powerful noninvasive technique with high soft-tissue contrast for the visualization of the coronary anatomy without X-ray exposure. Due to the small dimensions and tortuous nature of the coronary arteries, a high spatial resolution and sufficient volumetric coverage have to be obtained. However, this necessitates scanning times that are typically much longer than one cardiac cycle. By collecting image data during multiple RR intervals, one can successfully acquire coronary MR angiograms. However, constant cardiac contraction and relaxation, as well as respiratory motion, adversely affect image quality. Therefore, sophisticated motion-compensation strategies are needed. Furthermore, a high contrast between the coronary arteries and the surrounding tissue is mandatory. In the present article, challenges and solutions of coronary imaging are discussed, and results obtained in both healthy and diseased states are reviewed. This includes preliminary data obtained with state-of-the-art techniques such as steady-state free precession (SSFP), whole-heart imaging, intravascular contrast agents, coronary vessel wall imaging, and high-field imaging. Simultaneously, the utility of electron beam computed tomography (EBCT) and multidetector computed tomography (MDCT) for the visualization of the coronary arteries is discussed.
Resumo:
Unlike in adult heart, embryonic myocardium works at low PO2 and depends preferentially on glucose. Therefore, activity of the embryonic heart during anoxia and reoxygenation should be particularly affected by changes in glucose availability. Hearts excised from 4-d-old chick embryos were submitted in vitro to strictly controlled anoxia-reoxygenation transitions at glucose concentrations varying from 0 to 20 mmol/L. Spontaneous and regular heart contractions were detected optically as movements of the ventricle wall and instantaneous heart rate, amplitude of contraction, and velocities of contraction and relaxation were determined. Anoxia induced transient tachycardia and rapidly depressed contractile activity, whereas reoxygenation provoked a temporary and complete cardioplegia (oxygen paradox). In the presence of glucose, atrial rhythm became irregular during anoxia and chaotic-periodic during reoxygenation. The incidence of these arrhythmias depended on duration of anoxia, and no ventricular ectopic beats were observed. Removal of glucose or blockade of glycolysis suppressed arrhythmias. These results show similarities but also differences with respect to the adult heart. Indeed, glucose 1) delayed and anoxic contractile failure, shortened the reoxygenation-induced cardiac arrest, and improved the recovery of contractile activity; 2) attenuated stunning at 20 mmol/L but worsened it at 8 mmol/L; and 3) paradoxically, was arrhythmogenic during anoxia and reoxygenation, especially when present at the physiologic concentration of 8 mmol/L. The last named phenomenon seems to be characteristic of the young embryonic heart, and our findings underscore that fluctuations of glycolytic activity may play a role in the reactivity of the embryonic myocardium to anoxiareoxygenation transitions.
Resumo:
Background: Bumblebees represent an active pollinator group in mountain regions and assure the pollination of many different plant species from low to high elevations. Plant-pollinator interactions are mediated by functional traits. Shift in bumblebee functional structure under climate change may impact plant-pollinator interactions in mountains. Here, we estimated bumblebee upward shift in elevation, community turnover, and change in functional structure under climate change. Method: We sampled bumblebee species at 149 sites along the elevation gradient. We used stacked species distribution models (S-SDMs) forecasted under three climate change scenarios (A2, A1B, RCP3PD) to model the potential distribution of the Bombus species. Furthermore, we used species proboscis length measurements to assess the functional change in bumblebee assemblages along the elevation gradient. Results: We found species-specific response of bumblebee species to climate change. Species differed in their predicted rate of range contraction and expansion. Losers were mainly species currently restricted to high elevation. Under the most severe climate change scenarios (A2), we found a homogenization of proboscis length structure in bumblebee communities along the elevation gradient through the upward colonization of high elevation by species with longer proboscides. Conclusions: Here, we show that in addition to causing the shift in the distribution of bumblebee species, climate change may impact the functional structure of communities. The colonization of high elevation areas by bumblebee species with long proboscides may modify the structure of plant-pollination interaction networks by increasing the diversity of pollination services at high elevation.