57 resultados para Conscious
Resumo:
Behavioral and brain responses to identical stimuli can vary with experimental and task parameters, including the context of stimulus presentation or attention. More surprisingly, computational models suggest that noise-related random fluctuations in brain responses to stimuli would alone be sufficient to engender perceptual differences between physically identical stimuli. In two experiments combining psychophysics and EEG in healthy humans, we investigated brain mechanisms whereby identical stimuli are (erroneously) perceived as different (higher vs lower in pitch or longer vs shorter in duration) in the absence of any change in the experimental context. Even though, as expected, participants' percepts to identical stimuli varied randomly, a classification algorithm based on a mixture of Gaussians model (GMM) showed that there was sufficient information in single-trial EEG to reliably predict participants' judgments of the stimulus dimension. By contrasting electrical neuroimaging analyses of auditory evoked potentials (AEPs) to the identical stimuli as a function of participants' percepts, we identified the precise timing and neural correlates (strength vs topographic modulations) as well as intracranial sources of these erroneous perceptions. In both experiments, AEP differences first occurred ∼100 ms after stimulus onset and were the result of topographic modulations following from changes in the configuration of active brain networks. Source estimations localized the origin of variations in perceived pitch of identical stimuli within right temporal and left frontal areas and of variations in perceived duration within right temporoparietal areas. We discuss our results in terms of providing neurophysiologic evidence for the contribution of random fluctuations in brain activity to conscious perception.
Resumo:
BACKGROUND: Colonoscopy is generally performed with the patient sedated and receiving analgesics. However, the benefit of the most often used combination of intravenous midazolam and pethidine on patient tolerance and pain and its cardiorespiratory risk have not been fully defined. METHODS: In this double-blind prospective study, 150 outpatients undergoing routine colonoscopy were randomly assigned to receive either (1) low-dose midazolam (35 micrograms/kg) and pethidine (700 micrograms/kg in 48 patients, 500 micrograms/kg in 102 patients), (2) midazolam and placebo pethidine, or (3) pethidine and placebo midazolam. RESULTS: Tolerance (visual analog scale, 0 to 100 points: 0 = excellent; 100 = unbearable) did not improve significantly more in group 1 compared with group 2 (7 points; 95% confidence interval [-2-17]) and group 3 (2 points; 95% confidence interval [-7-12]). Similarly, pain was not significantly improved in group 1 as compared with the other groups. Male gender (p < 0.001) and shorter duration of the procedure (p = 0.004), but not amnesia, were associated with better patient tolerance and less pain. Patient satisfaction was similar in all groups. Oxygen desaturation and hypotension occurred in 33% and 11%, respectively, with a similar frequency in all three groups. CONCLUSIONS: In this study, the combination of low-dose midazolam and pethidine does not improve patient tolerance and lessen pain during colonoscopy as compared with either drug given alone. When applying low-dose midazolam, oxygen desaturation and hypotension do not occur more often after combined use of both drugs. For the individual patient, sedation and analgesia should be based on the endoscopist's clinical judgement.
Resumo:
OBJECTIVES: Calcium-sensing receptors (CaSRs) have been localized in the juxtaglomerular apparatus where they may contribute to the regulation of renin release. In the present study, we investigated the in-vitro and in-vivo effects of the calcimimetic R-568 on renin release. METHODS: In vitro, the effect of calcimimetics on renin release was assessed by incubating freshly isolated rat juxtaglomerular cells with or without R-568 (1 and 10 mumol/l) in serum-free medium in the presence or absence of forskolin or CaCl2. In vivo, we measured the impact of R-568 (20 ng/min intravenously) on the acute changes in plasma renin activity (PRA) induced by either a 90 min infusion of the angiotensin-converting enzyme inhibitor captopril, or the beta-receptor agonist isoproterenol, or of a vehicle in or after a furosemide challenge in conscious Wistar rats. RESULTS: In vitro, R-568 dose-dependently blunted renin release, but also reduced the increase in renin due to forskolin (P < 0.01). Both isoproterenol and enalapril increased in vivo PRA to 3.1 +/- 0.3 and 3.7 +/- 0.5 ng Ang I/ml per h, respectively (P < 0.01), compared with vehicle (1.5 +/- 0.2 ng Ang I/ml per h). R-568 significantly reduced PRA to 2.1 +/- 0.1 ng/ml per h in isoproterenol-treated rats and to 1.6 +/- 0.2 ng/ml per h in enalapril-treated rats (P < 0.05). In low-salt treated animals, acute infusion of furosemide increased PRA from 8.7 +/- 3.2 to 18.6 +/- 2.3, whereas R-568 partially blunted this rise to 11.2 +/- 1.5 (P = 0.02). In vivo, R-568 significantly lowered serum calcium and PTH1-84, but the drug-induced changes in PRA were independent of the changes in calcium and parathyroid hormone. CONCLUSION: After the recent discovery of CaSRs in juxtaglomerular cells of mice, our results confirm the presence of such receptors in rats and demonstrate that these receptors modulate renin release both in vitro and in vivo. This suggests that CaSRs play a role as a regulatory pathway of renin release.
Resumo:
To test whether endotoxin decreases blood pressure acutely in rats by activating the plasma kinin-forming system, plasma kallikrein activity was determined in different experimental settings of endotoxemia. Conscious normotensive rats were infused for 45 min with endotoxin (LPS E. coli 0111:B4) at a dose (0.01 mg/min) which had no effect on blood pressure. Additional rats were infused with the vehicle of endotoxin. Plasma prekallikrein activity was measured at the end of the 45 min infusions. In other rats, a bolus intravenous injection of endotoxin (2 mg) was administered following the 45 min infusion of endotoxin or its vehicle. In these two latter groups of rats, plasma prekallikrein activity was determined 15 min after administration of the bolus dose of endotoxin. In rats pretreated with the endotoxin infusion, the bolus dose of endotoxin had no significant effect on blood pressure, whereas rats infused with the vehicle became and remained hypotensive up to the end of the experiment. There was however no significant difference in plasma prekallikrein activity within the different groups of rats. In another group of rats, dextran sulfate (0.25 mg i.v.), which activates factor XII and thereby the conversion of prekallikrein to kallikrein, induced a short-lasting fall in blood pressure. 15 min after administration of dextran sulfate, plasma prekallikrein activity was almost completely suppressed. These results obtained in unanesthetized rats strongly suggest that the blood pressure fall induced by E. coli endotoxin is not due to activation of prekallikrein and consequently of the kinin-forming system.
Resumo:
We report a 38 year-old patient who had temporoparietal epilepsy and unusual ictal "out of body" experiences that remained undiagnosed for more than ten years, until her admission for a motor seizure of the left hemibody. Out of body episodes were experienced as intense and ecstatic astral journeys. EEG showed a bilateral extension of epileptiform abnormalities to the parietal regions, predominantly on the right side. We discuss the various forms of heautoscopy and their putative mechanisms. We suggest that a disturbance in representing space in independent extrapersonal and personal coordinates might be as crucial as the elusive hypothesis of a body schema disorder. Combined involvement of the parietal neocortex and temporolimbic structures might allow those experiences to gain a subjective vividness which appears to be indissociable from normal conscious experiences.
Resumo:
This study in conscious normotensive rats was performed to assess the effect of the vasoconstrictor peptide, neuropeptide Y (NPY), on blood pressure responsiveness to exogenous norepinephrine in endotoxaemia. NPY and endotoxin were infused at doses which had no effect on blood pressure, whether given alone or in combination. Endotoxin markedly reduced the pressor responses to bolus injections of norepinephrine. However, blood pressure responsiveness could be enhanced by infusing NPY simultaneously with the endotoxin. It is suggested that low dose NPY infusions may be clinically useful in reversing the reduced vascular responsiveness to pressor amines in shock.
Resumo:
The debate about Free Will has been in the human mind for centuries, but has become even more intense with the recent scientific findings adding new lights on the problem. This interdisciplinary explosion of interest for the topic has brought many insightful knowledge, but also a great deal of epistemological problems. We think that those epistemological problems are deeply related to the very definition of Free Will and how this definition interacts with the interpretations of experimental results. We will thus outline a few of these problems and then propose a definition of Free Will which takes into account those epistemological pitfalls.
Resumo:
This study was undertaken to assess in conscious normotensive rats the effects of beta-adrenoceptor stimulation on plasma neuropeptide Y (NPY) levels. Wistar rats were subjected to adrenal demedullation on the right side and were either adrenalectomized or sham-operated on the left side. Eleven days later, the conscious rats were infused i.v. for 30 min with either isoproterenol (10 ng/min) or its vehicle. Plasma NPY levels were significantly lower (23.8 +/- 2.6 pM, means +/- S.E.M., n = 12, P < 0.01) in vehicle-treated medullectomized rats than in corresponding sham-operated controls (36.7 +/- 4.1 pM, n = 12). The medullectomized rats infused with isoproterenol showed plasma NPY levels (36.7 +/- 3.3 pM, n = 11) comparable to those of sham-operated rats having received the vehicle. These data therefore demonstrate that plasma NPY levels are lower in rats without adrenal medulla and that in these animals isoproterenol increases NPY release, most likely by activating pre-synaptic beta-adrenoceptors.
Resumo:
The current state of empirical investigations refers to consciousness as an all-or-none phenomenon. However, a recent theoretical account opens up this perspective by proposing a partial level (between nil and full) of conscious perception. In the well-studied case of single-word reading, short-lived exposure can trigger incomplete word-form recognition wherein letters fall short of forming a whole word in one's conscious perception thereby hindering word-meaning access and report. Hence, the processing from incomplete to complete word-form recognition straightforwardly mirrors a transition from partial to full-blown consciousness. We therefore hypothesized that this putative functional bottleneck to consciousness (i.e. the perceptual boundary between partial and full conscious perception) would emerge at a major key hub region for word-form recognition during reading, namely the left occipito-temporal junction. We applied a real-time staircase procedure and titrated subjective reports at the threshold between partial (letters) and full (whole word) conscious perception. This experimental approach allowed us to collect trials with identical physical stimulation, yet reflecting distinct perceptual experience levels. Oscillatory brain activity was monitored with magnetoencephalography and revealed that the transition from partial-to-full word-form perception was accompanied by alpha-band (7-11 Hz) power suppression in the posterior left occipito-temporal cortex. This modulation of rhythmic activity extended anteriorly towards the visual word form area (VWFA), a region whose selectivity for word-forms in perception is highly debated. The current findings provide electrophysiological evidence for a functional bottleneck to consciousness thereby empirically instantiating a recently proposed partial perspective on consciousness. Moreover, the findings provide an entirely new outlook on the functioning of the VWFA as a late bottleneck to full-blown conscious word-form perception.
Resumo:
Diagnosis and decisions on life-sustaining treatment (LST) in disorders of consciousness, such as the vegetative state (VS) and the minimally conscious state (MCS), are challenging for neurologists. The locked-in syndrome (LiS) is sometimes confounded with these disorders by less experienced physicians. We aimed to investigate (1) the application of diagnostic knowledge, (2) attitudes concerning limitations of LST, and (3) further challenging aspects in the care of patients. A vignette-based online survey with a randomized presentation of a VS, MCS, or LiS case scenario was conducted among members of the German Society for Neurology. A sample of 503 neurologists participated (response rate 16.4%). An accurate diagnosis was given by 86% of the participants. The LiS case was diagnosed more accurately (94%) than the VS case (79%) and the MCS case (87%, p < 0.001). Limiting LST for the patient was considered by 92, 91, and 84% of the participants who accurately diagnosed the VS, LiS, and MCS case (p = 0.09). Overall, most participants agreed with limiting cardiopulmonary resuscitation; a minority considered limiting artificial nutrition and hydration. Neurologists regarded the estimation of the prognosis and determination of the patients' wishes as most challenging. The majority of German neurologists accurately applied the diagnostic categories VS, MCS, and LiS to case vignettes. Their attitudes were mostly in favor of limiting life-sustaining treatment and slightly differed for MCS as compared to VS and LiS. Attitudes toward LST strongly differed according to circumstances (e.g., patient's will opposed treatment) and treatment measures.
Resumo:
To analyze the role of the murine hepatoportal glucose sensor in the control of whole-body glucose metabolism, we infused glucose at a rate corresponding to the endogenous glucose production rate through the portal vein of conscious mice (Po-mice) that were fasted for 6 h. Mice infused with glucose at the same rate through the femoral vein (Fe-mice) and mice infused with a saline solution (Sal-mice) were used as controls. In Po-mice, hypoglycemia progressively developed until glucose levels dropped to a nadir of 2.3 +/- 0.1 mmol/l, whereas in Fe-mice, glycemia rapidly and transiently developed, and glucose levels increased to 7.7 +/- 0.6 mmol/l before progressively returning to fasting glycemic levels. Plasma insulin levels were similar in both Po- and Fe-mice during and at the end of the infusion periods (21.2 +/- 2.2 vs. 25.7 +/- 0.9 microU/ml, respectively, at 180 min of infusion). The whole-body glucose turnover rate was significantly higher in Po-mice than in Fe-mice (45.9 +/- 3.8 vs. 37.7 +/- 2.0 mg x kg(-1) x min)-1), respectively) and in Sal-mice (24.4 +/- 1.8 mg x kg(-1) x min(-1)). Somatostatin co-infusion with glucose in Po-mice prevented hypoglycemia without modifying the plasma insulin profile. Finally, tissue glucose clearance, which was determined after injecting 14C-2-deoxyglucose, increased to a higher level in Po-mice versus Fe-mice in the heart, brown adipose tissue, and the soleus muscle. Our data show that stimulation of the hepatoportal glucose sensor induced hypoglycemia and increased glucose utilization by a combination of insulin-dependent and insulin-independent or -sensitizing mechanisms. Furthermore, activation of the glucose sensor and/or transmission of its signal to target tissues can be blocked by somatostatin.
Resumo:
The mechanisms sustaining high blood pressure in conscious one-kidney, one-clip Goldblatt rats were evaluated with the use of SK&F 64139, a phenylethanolamine N-methyltransferase inhibitor capable of crossing the blood-brain barrier and of captopril, an angiotensin converting enzyme inhibitor. The rats were studied 3 weeks after left renal artery clipping and contralateral nephrectomy. During the developmental phase of hypertension, two groups of rats were maintained on a regular salt (RNa) intake, whereas two other groups were given a low salt (LNa) diet. On the day of the experiment, the base-line mean blood pressure measured in the LNa rats (177.4 +/- 5.2 mm Hg, mean +/- S.E., n = 15) was similar to that measured in the RNa rats (178.7 +/- 5.4 mm Hg, n = 16). SK&F 64139 (12.5 mg p.o.) induced a significantly more pronounced (P less than .001) blood pressure decrease in the RNa rats (-25.6 +/- 3.6 mm Hg, n = 8) than in the LNa rats (-4.3 +/- 3.3 mm Hg, n = 7) during a 90-min observation period. On the other hand, captopril (10 mg p.o.) normalized blood pressure in LNa rats (n = 8), but produced only a 13.4 mm Hg blood pressure drop in RNa rats (n = 8). RNa rats treated with SK&F 64139 were found to have decreased phenylethanolamine N-methyltransferase activity by an average 80% in selected brain stem nuclei when compared with nontreated rats. No significant difference in plasma catecholamine levels was found between the RNa and LNa rats. These results suggest that, in this experimental model of hypertension, the sodium ion might increase the model of hypertension, the sodium ion might increase the vasoconstrictor contribution of the sympathetic system via a centrally mediated neurogenic mechanism while at the same time it decreases the renin-dependency of the high blood pressure.
Resumo:
Debris flows are among the most dangerous processes in mountainous areas due to their rapid rate of movement and long runout zone. Sudden and rather unexpected impacts produce not only damages to buildings and infrastructure but also threaten human lives. Medium- to regional-scale susceptibility analyses allow the identification of the most endangered areas and suggest where further detailed studies have to be carried out. Since data availability for larger regions is mostly the key limiting factor, empirical models with low data requirements are suitable for first overviews. In this study a susceptibility analysis was carried out for the Barcelonnette Basin, situated in the southern French Alps. By means of a methodology based on empirical rules for source identification and the empirical angle of reach concept for the 2-D runout computation, a worst-case scenario was first modelled. In a second step, scenarios for high, medium and low frequency events were developed. A comparison with the footprints of a few mapped events indicates reasonable results but suggests a high dependency on the quality of the digital elevation model. This fact emphasises the need for a careful interpretation of the results while remaining conscious of the inherent assumptions of the model used and quality of the input data.
Resumo:
BACKGROUND: Insulin resistance and arterial hypertension are related, but the underlying mechanism is unknown. Endothelial nitric oxide synthase (eNOS) is expressed in skeletal muscle, where it may govern metabolic processes, and in the vascular endothelium, where it regulates arterial pressure. METHODS AND RESULTS: To study the role of eNOS in the control of the metabolic action of insulin, we assessed insulin sensitivity in conscious mice with disruption of the gene encoding for eNOS. eNOS(-/-) mice were hypertensive and had fasting hyperinsulinemia, hyperlipidemia, and a 40% lower insulin-stimulated glucose uptake than control mice. Insulin resistance in eNOS(-/-) mice was related specifically to impaired NO synthesis, because in equally hypertensive 1-kidney/1-clip mice (a model of renovascular hypertension), insulin-stimulated glucose uptake was normal. CONCLUSIONS: These results indicate that eNOS is important for the control not only of arterial pressure but also of glucose and lipid homeostasis. A single gene defect, eNOS deficiency, may represent the link between metabolic and cardiovascular disease.