86 resultados para Computational transgenic
Resumo:
Proteomics has come a long way from the initial qualitative analysis of proteins present in a given sample at a given time ("cataloguing") to large-scale characterization of proteomes, their interactions and dynamic behavior. Originally enabled by breakthroughs in protein separation and visualization (by two-dimensional gels) and protein identification (by mass spectrometry), the discipline now encompasses a large body of protein and peptide separation, labeling, detection and sequencing tools supported by computational data processing. The decisive mass spectrometric developments and most recent instrumentation news are briefly mentioned accompanied by a short review of gel and chromatographic techniques for protein/peptide separation, depletion and enrichment. Special emphasis is placed on quantification techniques: gel-based, and label-free techniques are briefly discussed whereas stable-isotope coding and internal peptide standards are extensively reviewed. Another special chapter is dedicated to software and computing tools for proteomic data processing and validation. A short assessment of the status quo and recommendations for future developments round up this journey through quantitative proteomics.
Resumo:
OBJECTIVES: The reconstruction of the right ventricular outflow tract (RVOT) with valved conduits remains a challenge. The reoperation rate at 5 years can be as high as 25% and depends on age, type of conduit, conduit diameter and principal heart malformation. The aim of this study is to provide a bench model with computer fluid dynamics to analyse the haemodynamics of the RVOT, pulmonary artery, its bifurcation, and left and right pulmonary arteries that in the future may serve as a tool for analysis and prediction of outcome following RVOT reconstruction. METHODS: Pressure, flow and diameter at the RVOT, pulmonary artery, bifurcation of the pulmonary artery, and left and right pulmonary arteries were measured in five normal pigs with a mean weight of 24.6 ± 0.89 kg. Data obtained were used for a 3D computer fluid-dynamics simulation of flow conditions, focusing on the pressure, flow and shear stress profile of the pulmonary trunk to the level of the left and right pulmonary arteries. RESULTS: Three inlet steady flow profiles were obtained at 0.2, 0.29 and 0.36 m/s that correspond to the flow rates of 1.5, 2.0 and 2.5 l/min flow at the RVOT. The flow velocity profile was constant at the RVOT down to the bifurcation and decreased at the left and right pulmonary arteries. In all three inlet velocity profiles, low sheer stress and low-velocity areas were detected along the left wall of the pulmonary artery, at the pulmonary artery bifurcation and at the ostia of both pulmonary arteries. CONCLUSIONS: This computed fluid real-time model provides us with a realistic picture of fluid dynamics in the pulmonary tract area. Deep shear stress areas correspond to a turbulent flow profile that is a predictive factor for the development of vessel wall arteriosclerosis. We believe that this bench model may be a useful tool for further evaluation of RVOT pathology following surgical reconstructions.
Resumo:
Machado-Joseph disease (MJD) or spinocerebellar ataxia type 3 (SCA3) is an autosomal dominantly-inherited neurodegenerative disorder caused by the over-repetition of a CAG codon in the MJD1 gene. This expansion translates into a polyglutamine tract that confers a toxic gain-of-function to the mutant protein - ataxin-3, leading to neurodegeneration in specific brain regions, with particular severity in the cerebellum. No treatment able to modify the disease progression is available. However, gene silencing by RNA interference has shown promising results. Therefore, in this study we investigated whether lentiviral-mediated allele-specific silencing of the mutant ataxin-3 gene, after disease onset, would rescue the motor behavior deficits and neuropathological features in a severely impaired transgenic mouse model of MJD. For this purpose, we injected lentiviral vectors encoding allele-specific silencing-sequences (shAtx3) into the cerebellum of diseased transgenic mice expressing the targeted C-variant of mutant ataxin-3 present in 70% of MJD patients. This variation permits to discriminate between the wild-type and mutant forms, maintaining the normal function of the wild-type allele and silencing only the mutant form. Quantitative analysis of rotarod performance, footprint and activity patterns revealed significant and robust alleviation of gait, balance (average 3-fold increase of rotarod test time), locomotor and exploratory activity impairments in shAtx3-injected mice, as compared to control ones injected with shGFP. An important improvement of neuropathology was also observed, regarding the number of intranuclear inclusions, calbindin and DARPP-32 immunoreactivity, fluorojade B and Golgi staining and molecular and granular layers thickness. These data demonstrate for the first time the efficacy of gene silencing in blocking the MJD-associated motor-behavior and neuropathological abnormalities after the onset of the disease, supporting the use of this strategy for therapy of MJD.
Resumo:
OBJECTIVE: : Increases in plasma angiotensinogen (Ang-N) due to genetic polymorphisms or pharmacological stimuli like estrogen have been associated with a blood pressure (BP) rise, increased salt sensitivity and cardiovascular risk. The relationship between Ang-N, the resetting of the renin-angiotensin system, and BP still remains unclear. Angiotensin (Ang) II-induced genetic hypertension should respond to lisinopril treatment. METHODS: : A new transgenic rat line (TGR) with hepatic overexpression of native (rat) Ang-N was established to study high plasma Ang-N. The transgene contained a mutation producing Val-Ang-II, which was measured separately from nontransgenic Ile-Ang-II in plasma and renal tissue. RESULTS: : Male homozygous TGR had increased plasma Ang-N (∼20-fold), systolic BP (ΔBP + 26 mmHg), renin activity (∼2-fold), renin activity/concentration (∼5-fold), total Ang-II (∼2-fold, kidney 1.7-fold) but decreased plasma renin concentrations (-46%, kidney -85%) and Ile-Ang-I and II (-93%, -94%) vs. controls. Heterozygous TGR exhibited ∼10-fold higher plasma Ang-N and 17 mmHg ΔBP. Lisinopril decreased their SBP (-23 vs. -13 mmHg in controls), kidney Ang-II/I (∼3-fold vs. ∼2-fold) and Ile-Ang-II (-70 vs. -40%), and increased kidney renin and Ile-Ang-I (>2.5-fold vs. <2.5-fold). Kidney Ang-II remained higher and renin lower in TGR compared with controls. CONCLUSION: : High plasma Ang-N increases plasma and kidney Ang-II levels, and amplifies the plasma and renal Ang-II response to a given change in renal renin secretion. This enzyme-kinetic amplification dominates over the Ang-II mediated feedback reduction of renin secretion. High Ang-N levels thus facilitate hypertension via small increases of Ang II and may influence the effectiveness of renin-angiotensin system inhibitors.
Resumo:
Although many studies have been carried out to verify the involvement of the peripheral nervous system (PNS) in dystrophia myotonica (DM1) patients, the results remain controversial. The generation of DM1 transgenic mice displaying the human DM1 phenotype provides a useful tool to investigate the type and incidence of structural abnormalities in the PNS. In the present study, the morphological and morphometric analysis of semi-thin sections of sciatic and sural nerves, lumbar dorsal root ganglia (DRG) and lumbar spinal cords revealed that in DM1 transgenic mice carrying 300 CTG repeats, there is no change in the number and diameter of myelinated axons compared to wild type. Only a non-significant reduction in the percentage of thin myelinated axons was detected in electron micrographs of ultra-thin sciatic nerve sections. Analysis of the number of neurons did not reveal a loss in number of either sensory neurons in the lumbar DRG or motor neurons in the lumbar spinal cord in these DM1 mice. Furthermore, in hind limb muscle sections, stained with a neurofilament antibody and alpha-bungarotoxin, the intramuscular axon arborization appeared normal in DM1 mice and undistinguishable from that in wild-type mice. Moreover, in DM1 mice, there was no irregularity in the structure or an increase in the endplate area. Also statistical analysis did not show an increase in endplate density or in the concentration of acetylcholine receptors. Altogether, these results suggest that 300 CTG repeats are not sufficient to induce axonopathy, demyelination or neuronopathies in this transgenic mouse model.
Resumo:
Purpose: We generated genetically engineered pigs expressing the human dominant GUCY2DE837D/R838S allele to modelize cone dystrophy. After a functional follow-up showing reduced photopic ERG responses (ARVO 2011), we analyzed the eyes by immunohistochemistry and revealed retinal modifications in the transgenic group. Methods: Lentiviral vectors encoding the human double mutant GUCY2DE837D/R838S cDNA under the control of a portion of the pig arrestin-3 promoter (Arr3) were produced and used for lentiviral-mediated transgenesis in pigs. Animals were regularly submitted to behavioral and functional investigations and were sacrificed at 4, 7, 15 and 18 months of age for histological and RT-PCR analyses. Retinal markers were used to evaluate the retinal status of eleven transgenic pigs and 6 non-transgenic controls. The expression of the mutant cDNA was also assayed by RT-PCR. Results: A significant increase in the number of displaced nuclei in the outersegment layer is observed in transgenic animals compared to control animals independently of their age. Part of these nuclei originate from cones as demonstrated by colocalization with cone markers. No significant change in the ONL thickness (central and peripheral retina) was measured between 4 and 18 months of age, showing a slow progression of the disease in the transgenic pigs within this time-frame. Conclusions: Arr3-GUCY2DE837D/R838S pigs show signs of retinal abnormality with slow progression which parallels the loss of photopic function. Further characterization of this model should help to elucidate the molecular mechanisms underlying the disease evolution.
Resumo:
The kidney is a key organ in the maintenance of ion and fluid homeostasis and specific transport systems localized along the nephron guarantee this function. Due to its large functional heterogeneity, experiments on the whole organ level cannot be easily performed, and thus more refined tools are needed, like for example the development of specific recombination systems to gain knowledge on the physiological role of single proteins implicated in ion transport. This review introduces the transgenic technology developed over the past decades, and then focuses on recent strategies for generating kidney-specific gene targeting, over-expression, and gene ablation in mice, that will help to understand the physiological role of proteins implicated in salt and water balance in the kidney.
Resumo:
PURPOSE: Despite ubiquitous expression of the keratoepithelin (KE) protein encoded by the transforming growth factor beta induced/beta induced gene human clone 3 (TGFBI/BIGH3) gene, corneal dystrophies are restricted to the cornea, and no other tissues are affected. We investigated the role of TGFBI/BIGH3 in Groenouw corneal dystrophies by generating transgenic mice overexpressing TGFBI/BIGH3 containing the R555W mutation. METHODS: Transgenic animals expressing the Groenouw mutation of human TGFBI/BIGH3 were generated using lentiviral vectors. The line expressed TGFBI/BIGH3 containing the R555W mutation under the control of the phosphoglycerate kinase (PGK) promoter. Expression of the transgene was monitored by Southern and western blotting and by RT-PCR. Electroretinogram analysis was performed and four mice were subjected to complete necroscopy. RESULTS: Transgene expression was observed in different organs although without specific expression in the cornea. The overall morphology of the transgenic animals was not severely affected by KE overexpression. However, we observed an age-dependent retinal degeneration both functionally and histologically. Female-specific follicular hyperplasia in the spleen and increased levels of lipofuscin in the adrenal gland were also seen in transgenic animals. CONCLUSIONS: Cellular degeneration in the retina of transgenic animals suggest that perturbation of the transforming growth factor beta (TGFbeta) family regulation may affect photoreceptor survival and may induce possible accelerated aging in several tissues. No corneal phenotype could be observed, probably due to the lack of transgene expression in this tissue.
Resumo:
Thymic positive and negative selection of developing T lymphocytes confronts us with a paradox: How can a T-cell antigen receptor (TCR)-major histocompatibility complex (MHC)/peptide interaction in the former process lead to transduction of signals allowing for cell survival and in the latter induce programmed cell death or a hyporesponsive state known as anergy? One of the hypotheses put forward states that the outcome of a TCR-MHC/peptide interaction depends on the cell type presenting the selecting ligand to the developing thymocyte. Here we describe the development and lack of self-tolerance of CD8(+) T lymphocytes in transgenic mice expressing MHC class I molecules in the thymus exclusively on cortical epithelial cells. Despite the absence of MHC class I expression on professional antigen-presenting cells, normal numbers of CD8(+) cells were observed in the periphery. Upon specific activation, transgenic CD8(+) T cells efficiently lysed syngeneic MHC class I(+) targets in vitro and in vivo, indicating that thymic cortical epithelium (in contrast to medullary epithelium and antigen-presenting cells of hematopoietic origin) is incapable of tolerance induction. Thus, compartmentalization of the antigen-presenting cells involved in thymic positive selection and tolerance induction can (at least in part) explain the positive/negative selection paradox.
Resumo:
Autoreactive T lymphocytes are clonally deleted during maturation in the thymus. Deletion of T cells expressing particular receptor V beta elements is controlled by poorly defined autosomal dominant genes. A gene has now been identified by expression of transgenes in mice which causes deletion of V beta 14+ T cells. The gene lies in the open reading frame of the long terminal repeat of the mouse mammary tumour virus.
Resumo:
Polyhydroxyalkanoates (PHAs) are bacterial polyesters having the properties of biodegradable thermoplastics and elastomers. Synthesis of PHAs has been demonstrated in transgenic plants. Both polyhydroxybutyrate and the co-polymer poly(hydroxybutyrate-co-hydroxyvalerate) have been synthesized in the plastids of Arabidopsis thaliana and Brassica napus. Furthermore, a range of medium-chain-length PHAs has also been produced in plant peroxisomes. Development of agricultural crops to produce PHA on a large scale and at low cost will be a challenging task requiring a coordinated and stable expression of several genes. Novel extraction methods designed to maximize the use of harvested plants for PHA, oil, carbohydrate, and feed production will be needed. In addition to their use as plastics, PHAs can also be used to modify fiber properties in plants such as cotton. Furthermore, PHA can be exploited as a novel tool to study the carbon flux through various metabolic pathways, such as the fatty acid beta-oxidation cycle.
Resumo:
To investigate their role in receptor coupling to G(q), we mutated all basic amino acids and some conserved hydrophobic residues of the cytosolic surface of the alpha(1b)-adrenergic receptor (AR). The wild type and mutated receptors were expressed in COS-7 cells and characterized for their ligand binding properties and ability to increase inositol phosphate accumulation. The experimental results have been interpreted in the context of both an ab initio model of the alpha(1b)-AR and of a new homology model built on the recently solved crystal structure of rhodopsin. Among the twenty-three basic amino acids mutated only mutations of three, Arg(254) and Lys(258) in the third intracellular loop and Lys(291) at the cytosolic extension of helix 6, markedly impaired the receptor-mediated inositol phosphate production. Additionally, mutations of two conserved hydrophobic residues, Val(147) and Leu(151) in the second intracellular loop had significant effects on receptor function. The functional analysis of the receptor mutants in conjunction with the predictions of molecular modeling supports the hypothesis that Arg(254), Lys(258), as well as Leu(151) are directly involved in receptor-G protein interaction and/or receptor-mediated activation of the G protein. In contrast, the residues belonging to the cytosolic extensions of helices 3 and 6 play a predominant role in the activation process of the alpha(1b)-AR. These findings contribute to the delineation of the molecular determinants of the alpha(1b)-AR/G(q) interface.
Resumo:
Inhibitory MHC receptors determine the reactivity and specificity of NK cells. These receptors can also regulate T cells by modulating TCR-induced effector functions such as cytotoxicity, cytokine production, and proliferation. Here we have assessed the capacity of mouse T cells expressing the inhibitory MHC class I receptor Ly49A to respond to a well-defined tumor Ag in vivo using Ly49A transgenic mice. We find that the presence of Ly49A on the vast majority of lymphocytes prevents the development of a significant Ag-specific CD8+ T cell response and, consequently, the rejection of the tumor. Despite minor alterations in the TCR repertoire of CD8+ T cells in the transgenic lines, precursors of functional tumor-specific CD8+ T cells exist but could not be activated most likely due to a lack of appropriate CD4+ T cell help. Surprisingly, all of these effects are observed in the absence of a known ligand for the Ly49A receptor as defined by its ability to regulate NK cell function. Indeed, we found that the above effects on T cells may be based on a weak interaction of Ly49A with Kb or Db class I molecules. Thus, our data demonstrate that enforced expression of a Ly49A receptor on conventional T cells prevents a specific immune response in vivo and suggest that the functions of T and NK cells are differentially sensitive to the presence of inhibitory MHC class I receptors.