132 resultados para Clone


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The subcellular localization, distribution and the steady state level of calmodulin from maize roots (Zea mays L., cv. LG 11) were studied. To analyze the subcellular localization, 2-day old root membranes were fractionated by sucrose density gradient centrifugation and immunoblotting was done with an antibody raised against a vertebrate calmodulin (SWant) which recognized the plant calmodulin. Calmodulin was principally associated with high density fractions and particularly plasmalemma. For studying the distribution of calmodulin in various zones of Zea mays roots, a micro method of membrane preparation was developed. Most of the calmodulin was present in microsomes isolated from the root apex corresponding to the first 4 mm of a 15 +/- 2 mm root. An identical distribution was found by studying the steady state level of the protein by Northern blotting using a cDNA clone of Zea mays calmodulin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cells from two melanoma cell lines, Me43 and GLL-19, were cloned in methylcellulose cultures and 20 randomly selected colonies from each line were picked up by micromanipulation, expanded in liquid cultures, and considered as clones of the original cell lines. The antigenic cell surface phenotype of these clones defined by panel of 12 monoclonal antibodies (MAb) was analyzed by flow microfluorometry (FMF) using a fluorescence-activated cell sorter (FACS II) and compared with the known stable phenotype of the parent cell line. The antibody panel consisted of eight MAb against melanoma-associated antigens, two MAb against monomorphic determinants of HLA-DR (la) and HLA-ABC, respectively, one MAb against the common acute lymphoblastic leukemia antigen (CALLA) and one MAb against carcinoembryonic antigen used as control. A remarkable heterogeneity in terms of qualitative and quantitative expression of the cell surface antigens studied was observed among and within the different clones. The single-cell origin of the clones was assessed by comparing the clonogenic cell frequency, determined by limiting dilutions in microculture plates, with the cloning efficiency observed in Petri dishes. Both techniques using methylcellulose medium gave the same percentages of growing colonies. Cells from four Me43 clones were recloned in methylcellulose and the phenotype of five randomly selected subclones from each clone was analysed using the same panel of monoclonal antibodies. Each subclone also displayed heterogeneity with individual phenotypes different from that of the original clone and from the parental Me43 cell line. The antigen expression by individual cells in situ within clones was analyzed on frozen sections from colonies using the same panel of MAb and a biotin-avidin immunoperoxidase method. The results confirmed the marked heterogeneity of antigen expression within and among colonies, as indicated by the FMF analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To study the interaction of the TCR with its ligand, the complex of a MHC molecule and an antigenic peptide, we modified a TCR contact residue of a H-2Kd-restricted antigenic peptide with photoreactive 4-azidobenzoic acid. The photoreactive group was a critical component of the epitope recognized by CTL clones derived from mice immunized with such a peptide derivative. The majority of these clones expressed V beta 1-encoded beta chains that were paired with J alpha TA28-encoded alpha chains. For one of these TCR, the photoaffinity labeled sites were mapped on the alpha chain as a J alpha TA28-encoded tryptophan and on the beta chain as a residue of the C' strand of V beta 1. Molecular modeling of this TCR suggested the presence of a hydrophobic pocket that harbors this tryptophan as well as a tyrosine on the C' strand of V beta 1 between which the photoreactive side chain inserts. It is concluded that this avid binding principle may account for the preferential selection of V beta 1 and J alpha TA28-encoded TCR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The specificity of recognition of pMHC complexes by T lymphocytes is determined by the V regions of the TCR alpha- and beta-chains. Recent experimental evidence has suggested that Ag-specific TCR repertoires may exhibit a more V alpha- than V beta-restricted usage. Whether V alpha usage is narrowed during immune responses to Ag or if, on the contrary, restricted V alpha usage is already defined at the early stages of TCR repertoire selection, however, has remained unexplored. Here, we analyzed V and CDR3 TCR regions of single circulating naive T cells specifically detected ex vivo and isolated with HLA-A2/melan-A peptide multimers. Similarly to what was previously observed for melan-A-specific Ag-experienced T cells, we found a relatively wide V beta usage, but a preferential V alpha 2.1 usage. Restricted V alpha 2.1 usage was also found among single CD8(+) A2/melan-A multimer(+) thymocytes, indicating that V alpha-restricted selection takes place in the thymus. V alpha 2.1 usage, however, was independent from functional avidity of Ag recognition. Thus, interaction of the pMHC complex with selected V alpha-chains contributes to set the broad Ag specificity, as underlined by preferential binding of A2/melan-A multimers to V alpha 2.1-bearing TCRs, whereas functional outcomes result from the sum of these with other interactions between pMHC complex and TCR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immune protection from infectious diseases and cancer is mediated by individual T cells of different clonal origin. Their functions are tightly regulated but not yet fully characterized. Understanding the contribution of each T cell will improve the prediction of immune protection based on laboratory assessment of T-cell responses. Here we developed techniques for simultaneous molecular and functional assessment of single CD8 T cells directly ex vivo. We studied two groups of patients with melanoma after vaccination with two closely related tumor antigenic peptides. Vaccination induced T cells with strong memory and effector functions, as found in virtually all T cells of the first patient group, and fractions of T cells in the second group. Interestingly, high functionality was not restricted to dominant clonotypes. Rather, dominant and nondominant clonotypes acquired equal functional competence. In parallel, this was also found for EBV- and CMV-specific T cells. Thus, the nondominant clonotypes may contribute similarly to immunity as their dominant counterparts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary Cancer is a leading cause of morbidity and mortality in Western countries (as an example, colorectal cancer accounts for about 300'000 new cases and 200'000 deaths each year in Europe and in the USA). Despite that many patients with cancer have complete macroscopic clearance of their disease after resection, radiotherapy and/or chemotherapy, many of these patients develop fatal recurrence. Vaccination with immunogenic peptide tumor antigens has shown encouraging progresses in the last decade; immunotherapy might therefore constitute a fourth therapeutic option in the future. We dissect here and critically evaluate the numerous steps of reverse immunology, a forecast procedure to identify antigenic peptides from the sequence of a gene of interest. Bioinformatic algorithms were applied to mine sequence databases for tumor-specific transcripts. A quality assessment of publicly available sequence databanks allowed defining strengths and weaknesses of bioinformatics-based prediction of colon cancer-specific alternative splicing: new splice variants could be identified, however cancer-restricted expression could not be significantly predicted. Other sources of target transcripts were quantitatively investigated by polymerase chain reactions, as cancer-testis genes or reported overexpressed transcripts. Based on the relative expression of a defined set of housekeeping genes in colon cancer tissues, we characterized a precise procedure for accurate normalization and determined a threshold for the definition of significant overexpression of genes in cancers versus normal tissues. Further steps of reverse immunology were applied on a splice variant of the Melan¬A gene. Since it is known that the C-termini of antigenic peptides are directly produced by the proteasome, longer precursor and overlapping peptides encoded by the target sequence were synthesized chemically and digested in vitro with purified proteasome. The resulting fragments were identified by mass spectroscopy to detect cleavage sites. Using this information and based on the available anchor motifs for defined HLA class I molecules, putative antigenic peptides could be predicted. Their relative affinity for HLA molecules was confirmed experimentally with functional competitive binding assays and they were used to search patients' peripheral blood lymphocytes for the presence of specific cytolytic T lymphocytes (CTL). CTL clones specific for a splice variant of Melan-A could be isolated; although they recognized peptide-pulsed cells, they failed to lyse melanoma cells in functional assays of antigen recognition. In the conclusion, we discuss advantages and bottlenecks of reverse immunology and compare the technical aspects of this approach with the more classical procedure of direct immunology, a technique introduced by Boon and colleagues more than 10 years ago to successfully clone tumor antigens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthetic combinatorial peptide libraries in positional scanning format (PS-SCL) have recently emerged as a useful tool for the analysis of T cell recognition. This includes identification of potentially cross-reactive sequences of self or pathogen origin that could be relevant for the understanding of TCR repertoire selection and maintenance, as well as of the cross-reactive potential of Ag-specific immune responses. In this study, we have analyzed the recognition of sequences retrieved by using a biometric analysis of the data generated by screening a PS-SCL with a tumor-reactive CTL clone specific for an immunodominant peptide from the melanocyte differentiation and tumor-associated Ag Melan-A. We found that 39% of the retrieved peptides were recognized by the CTL clone used for PS-SCL screening. The proportion of peptides recognized was higher among those with both high predicted affinity for the HLA-A2 molecule and high predicted stimulatory score. Interestingly, up to 94% of the retrieved peptides were cross-recognized by other Melan-A-specific CTL. Cross-recognition was at least partially focused, as some peptides were cross-recognized by the majority of CTL. Importantly, stimulation of PBMC from melanoma patients with the most frequently recognized peptides elicited the expansion of heterogeneous CD8(+) T cell populations, one fraction of which cross-recognized Melan-A. Together, these results underline the high predictive value of PS-SCL for the identification of sequences cross-recognized by Ag-specific T cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The epithelial sodium channel (ENaC) is responsible for Na(+) and fluid absorption across colon, kidney, and airway epithelia. Short palate lung and nasal epithelial clone 1 (SPLUNC1) is a secreted, innate defense protein and an autocrine inhibitor of ENaC that is highly expressed in airway epithelia. While SPLUNC1 has a bactericidal permeability-increasing protein (BPI)-type structure, its NH2-terminal region lacks structure. Here we found that an 18 amino acid peptide, S18, which corresponded to residues G22-A39 of the SPLUNC1 NH2 terminus inhibited ENaC activity to a similar degree as full-length SPLUNC1 (∼2.5 fold), while SPLUNC1 protein lacking this region was without effect. S18 did not inhibit the structurally related acid-sensing ion channels, indicating specificity for ENaC. However, S18 preferentially bound to the βENaC subunit in a glycosylation-dependent manner. ENaC hyperactivity is contributory to cystic fibrosis (CF) lung disease. Unlike control, CF human bronchial epithelial cultures (HBECs) where airway surface liquid (ASL) height was abnormally low (4.2 ± 0.6 μm), addition of S18 prevented ENaC-led ASL hyperabsorption and maintained CF ASL height at 7.9 ± 0.6 μm, even in the presence of neutrophil elastase, which is comparable to heights seen in normal HBECs. Our data also indicate that the ENaC inhibitory domain of SPLUNC1 may be cleaved away from the main molecule by neutrophil elastase, suggesting that it may still be active during inflammation or neutrophilia. Furthermore, the robust inhibition of ENaC by the S18 peptide suggests that this peptide may be suitable for treating CF lung disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In transplant rejection, graft versus host or autoimmune diseases T cells are mediating the pathophysiological processes. Compared to unspecific pharmacological immune suppression specific inhibition of those T cells, that are involved in the disease, would be an alternative and attractive approach. T cells are activated after their T cell receptor (TCR) recognizes an antigenic peptide displayed by the Major Histocompatibility Complex (MHC). Molecules that interact with MHC-peptide-complexes in a specific fashion should block T cells with identical specificity. Using the model of the SSX2 (103-111)/HLA-A*0201 complex we investigated a panel of MHC-peptide-specific Fab antibodies for their capacity blocking specific T cell clones. Like TCRs all Fab antibodies reacted with the MHC complex only when the SSX2 (103-111) peptide was displayed. By introducing single amino acid mutations in the HLA-A*0201 heavy chain we identified the K66 residue as the most critical binding similar to that of TCRs. However, some Fab antibodies did not inhibit the reactivity of a specific T cell clone against peptide pulsed, artificial targets, nor cells displaying the peptide after endogenous processing. Measurements of binding kinetics revealed that only those Fab antibodies were capable of blocking T cells that interacted with an affinity in the nanomolar range. Fab antibodies binding like TCRs with affinities on the lower micromolar range did not inhibit T cell reactivity. These results indicate that molecules that block T cells by competitive binding with the TCR must have the same specificity but higher affinity for the MHC-peptide-complex than the TCR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soluble peptide/MHC-class-I (pMHC) multimers have recently emerged as unique reagents for the study of specific interactions between the pMHC complex and the TCR. Here, we assessed the relative binding efficiency of a panel of multimers incorporating single-alanine-substituted variants of the tumor-antigen-derived peptide MAGE-A10(254-262) to specific CTL clones displaying different functional avidity. For each individual clone, the efficiency of binding of multimers incorporating MAGE-A10 peptide variants was, in most cases, in good although not linear correlation with the avidity of recognition of the corresponding variant. In addition, we observed two types of discrepancies between efficiency of recognition and multimer binding. First, for some peptide variants, efficient multimer binding was detected in the absence of measurable effector functions. Some of these peptide variants displayed antagonist activity. Second, when comparing different clones we found clear discrepancies between the dose of peptide required to obtain half-maximal lysis in CTL assays and the binding efficiency of the corresponding multimers. These discrepancies, however, were resolved when the differential stability of the TCR/pMHC complexes was determined. For individual clones, decreased recognition correlated with increased TCR/pMHC off-rate. TCR/pMHC complexes formed by antagonist ligands displayed off-rates faster than those of TCR/pMHC complexes formed with weak agonists. In addition, when comparing different clones, the efficiency of multimer staining correlated better with relative multimer off-rates than with half-maximal lysis values. Altogether, the data presented here reconcile and extend our previous results on the impact of the kinetics of interaction of TCR with pMHC complexes on multimer binding and underline the crucial role of TCR/pMHC off-rates for the functional outcome of such interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using H-2Kd-restricted CTL clones, which are specific for a photoreactive derivative of the Plasmodium berghei circumsporozoite peptide PbCS(252-260) (SYIPSAEKI) and permit assessment of TCR-ligand interactions by TCR photoaffinity labeling, we have previously identified several peptide derivative variants for which TCR-ligand binding and the efficiency of Ag recognition deviated by fivefold or more. Here we report that the functional CTL response (cytotoxicity and IFN-gamma production) correlated with the rate of TCR-ligand complex dissociation, but not the avidity of TCR-ligand binding. While peptide antagonists exhibited very rapid TCR-ligand complex dissociation, slightly slower dissociation was observed for strong agonists. Conversely and surprisingly, weak agonists typically displayed slower dissociation than the wild-type agonists. Acceleration of TCR-ligand complex dissociation by blocking CD8 participation in TCR-ligand binding increased the efficiency of Ag recognition in cases where dissociation was slow. In addition, permanent TCR engagement by TCR-ligand photocross-linking completely abolished sustained intracellular calcium mobilization, which is required for T cell activation. These results indicate that the functional CTL response depends on the frequency of serial TCR engagement, which, in turn, is determined by the rate of TCR-ligand complex dissociation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Like most somatic human cells, T lymphocytes have a limited replicative life span. This phenomenon, called senescence, presents a serious barrier to clinical applications that require large numbers of Ag-specific T cells such as adoptive transfer therapy. Ectopic expression of hTERT, the human catalytic subunit of the enzyme telomerase, permits fibroblasts and endothelial cells to avoid senescence and to become immortal. In an attempt to immortalize normal human CD8(+) T lymphocytes, we infected bulk cultures or clones of these cells with a retrovirus transducing an hTERT cDNA clone. More than 90% of transduced cells expressed the transgene, and the cell populations contained high levels of telomerase activity. Measuring the content of total telomere repeats in individual cells (by flowFISH) we found that ectopic hTERT expression reversed the gradual loss of telomeric DNA observed in control populations during long term culture. Telomere length in transduced cells reached the levels observed in freshly isolated normal CD8(+) lymphocytes. Nevertheless, all hTERT-transduced populations stopped to divide at the same time as nontransduced or vector-transduced control cells. When kept in IL-2 the arrested cells remained alive. Our results indicate that hTERT may be required but is not sufficient to immortalize human T lymphocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Starting from a biologically active recombinant DNA clone of exogenous unintegrated GR mouse mammary tumor virus, we have generated three subclones of PstI fragments of 1.45, 1.1, and 2.0 kb in the plasmid vector PBR322. The nucleotide sequence has been determined for the clone of 1.45 kb which includes almost the complete region of the long terminal repeat (LTR) plus an adjacent stretch of unique sequence DNA. A short region of the 2.0 kb clone, containing the beginning of the LTR, has also been sequenced. Starting with the A of an initiation codon outside the LTR, we detected an open reading frame of 960 nucleotides, potentially coding for a protein of 320 amino acids (36K). Two hundred nucleotides downstream from the termination codon, and approximately 25 nucleotides upstream from the presumptive initiation site of viral RNA synthesis, we found a promoter-like sequence. The sequence AGTAAA was detected approximately 15-20 nucleotides upstream from the 3' end of virion RNA and probably serves as a polyadenylation signal. The 1.45 kb PstI fragment has been transfected into Ltk- cells together with a plasmid containing the thymidine kinase gene of herpes simplex virus. The virus-specific RNA synthesis detected in a Tk+ cell clone was strongly stimulated by the addition of dexamethasone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In human somatic cells, including T lymphocytes, telomeres progressively shorten with each cell division, eventually leading to a state of cellular senescence. Ectopic expression of telomerase results in the extension of their replicative life spans without inducing changes associated with transformation. However, it is yet unknown whether somatic cells that overexpress telomerase are physiologically indistinguishable from normal cells. Using CD8+ T lymphocyte clones overexpressing telomerase, we investigated the molecular mechanisms that regulate T cell proliferation. In this study, we show that early passage T cell clones transduced or not with human telomerase reverse transcriptase displayed identical growth rates upon mitogenic stimulation and no marked global changes in gene expression. Surprisingly, reduced proliferative responses were observed in human telomerase reverse transcriptase-transduced cells with extended life spans. These cells, despite maintaining high expression levels of genes involved in the cell cycle progression, also showed increased expression in several genes found in common with normal aging T lymphocytes. Strikingly, late passage T cells overexpressing telomerase accumulated the cyclin-dependent inhibitors p16Ink4a and p21Cip1 that have largely been associated with in vitro growth arrest. We conclude that alternative growth arrest mechanisms such as those mediated by p16Ink4a and p21Cip1 still remained intact and regulated the growth potential of cells independently of their telomere status.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RESUME Nous avons étudié le rôle de deux molécules, le Transfon-ning Growth Factor (TGF-β) et l'oxyde nitrique (NO), dans le processus métastatique. Deux clones tumoraux ont été sélectionnés à partir d'un carcinome du côlon pour leur différence de potentiel tumorigénique dans des rats syngéniques. La croissance tumorale du clone progressif PROb a été corrélée à sa capacité à sécréter le TGF-β actif Cependant, la transfection du clone régressif REGb, sécrétant du TGF-β latent, par une vecteur codant pour le TGF-β bio-actif n'a pas permis d'induire le développement tumoral. Les deux clones tumoraux présentent des activités des protéases MMP-2, APN et DPPIV identiques et qui ne semblent pas modifiées par le TGF-β. L'interaction des cellules tumorales avec l'endothélium et l'activité de la NO synthase (iNOS) responsable de la synthèse de NO sont impliqués dans la progression de nombreux cancers. Le clone PROb, mais pas le clone REGb, inhibe l'activation de la iNOS des cellules endothéliales par sa sécrétion de TGF-β actif Les deux clones montrent cependant des propriétés d'adhésion identiques aux cellules endothéliales et sont capables d'inhiber par contact cellulaire direct l'activation de la iNOS endothéliale. Ceci suggère que ces contacts directs pourraient créer un micro-environnement favorable à la conversion du TGF-β latent en TGF-β actif ou à d'autres interactions moléculaires pouvant réguler l'activation endothéliale. Par ailleurs, les deux clones activent des macrophages du système nerveux central, organe où ils ne forment pas de métastases, mais pas les macrophages circulants, illustrant des mécanismes différentiels et spécifiques dans l'activation de différents types de cellules immunitaires. Afin de mieux comprendre le rôle du NO dans la dissémination métastatique, deux clones cellulaires différant par le taux d'activité de la iNOS ont été sélectionnés à partir de la lignée murine parentale de carcinome du sein EMT-6. Bien que le NO soit un inhibiteur potentiel de la prolifération cellulaire, les deux clones montrent des propriétés prolifératives identiques in vitro. Les cellules EMT-6H qui produisent peu de NO in vitro forment de nombreux nodules tumoraux pulmonaires in vivo corrélés à une mortalité significative des souris syngéniques injectées. Les cellules EMT-6J qui présentent une expression élevée de iNOS et de NO induisent de rares nodules tumoraux pulmonaires et peu de mortalité. Dans ce modèle, l'expression tumorale de NO semble donc défavoriser la croissance tumorale. Les deux clones cellulaires ont des propriétés identiques d'adhésion et de prolifération mesurées in vitro sur des cellules endothéliales primaires isolées de différents organes et in vivo par une colocalisation identique dans les poumons de souris syngéniques 48h après leur injection. Les cellules EMT-6H présentent une activité MMP-2 plus élevée alors que les activités des protéases APN et DPPIV sont identiques dans les deux clones cellulaires. Le TGF-β soluble ainsi que les fibroblastes primaires bloquent la prolifération des deux clones cellulaires. Cependant, l'activation préalable des fibroblastes par du TGF-β restaure partiellement la prolifération du clone EMT-6H mais pas celle du clone EMT-6J. Ces résultats montrent que le rôle de molécules telles que le TGF-β et le NO tumoral dans la progression tumorale doit être considéré dans un contexte d'interactions des cellules tumorales avec les différentes types cellulaires de l'hôte: en particulier, notre travail souligne que les macrophages et les fibroblastes sont déterminants dans la progression métastatique des carcinomes du côlon ou du sein. RESUME DESTINE A UN LARGE PUBLIC Les métastases tumorales, disséminées et intraitables par chirurgie, représentent un problème majeur dans le traitement clinique du cancer. Elles sont dues à des cellules tumorales qui ont migré de leur site tumoral primaire, circulé et survécu dans le système vasculaire de l'hôte, échappé au système immunitaire, adhéré à et survécu sur l'endothélium des vaisseaux, et envahi le tissu sous-jacent où elles ont proliféré. Cette capacité à former des métastases implique de nombreux facteurs dont certains ont été identifiés mais dont le rôle reste controversé dans les différentes études. Nous nous sommes intéressés au rôle de l'oxyde nitrique (NO) et du facteur de croissance et de transformation cellulaire TGF-β. Dans les carcinomes du sein, l'expression des enzymes responsables de la synthèse de NO a été corrélée avec l'invasion tumorale mais aussi avec un pronostic favorable selon les études. Deux clones cellulaires ont été isolés à partir de la tumeur mammaire EMT-6 chez la souris. Le clone EMT-6H sécrète peu de NO et forme de nombreuses tumeurs dans les poumons des souris *entraînant leur décès. Le clone EMT-6J sécrète beaucoup de NO et ne se développe que peu dans les poumons. Dans ce modèle expérimental, le NO semble donc défavoriser la croissance tumorale. L'analyse des interactions avec les cellules de l'hôte rencontrées lors de la formation de métastases pulmonaires a montré que les deux clones cellulaires adhérent et prolifèrent de manière similaire sur les cellules endothéliales tapissant l'intérieur des vaisseaux sanguins. L'arrêt des cellules tumorales dans les poumons ne permet donc pas d'expliquer la différence de croissance tumorale. Cependant, le clone agressif EMT-6H présente une activité élevée d'une protéase (MMP-2) qui lui permettrait par la suite d'envahir le tissu pulmonaire. Par ailleurs, l'activation des fibroblastes du tissu pulmonaire par le TGF-β, une molécule observée dans des conditions inflammatoires, permet au clone agressif EMT-6H de proliférer mais inhibe la croissance du clone EMT-6J. Dans un modèle expérimental de carcinome du côlon, le TGF-β est considéré favorable à la croissance tumorale. Isolées à partir de la même tumeur initiale, deux lignées de cellules ont des comportements opposés lorsqu'elles sont injectées sous la peau des rats. La capacité de la lignée PROb à former des tumeurs a été corrélée à la sécrétion de TGF-β actif L'introduction du gène codant pour le TGF-β actif dans la lignée REGb, qui ne sécrète pas de TGF-β actif et ne forme pas de tumeurs chez le rat, ne restaure pas leur potentiel tumorigénique. Dans ce modèle, l'expression de TGF-β actif ne semble donc pas suffisante à la croissance tumorale. Les interactions avec différents types cellulaires de l'hôte ont été étudiées. Les deux lignées tumorales adhérent de manière similaire sur les cellules endothéliales et sont capables d'inhiber leur activation, un mécanisme qui pourrait participer à la destruction. Les deux lignées activent les cellules immunitaires du système nerveux central, un organe où elles ne forment pas de métastase. Ces résultats suggèrent que la sélection des cellules métastatiques ne s'effectue pas sur l'endothélium des vaisseaux sanguins mais à des étapes ultérieures dans le micro- environnement cellulaire du nouvel organe colonisé. SUMMARY Metastasis results from the migration of tumor cells from their primary tumor, circulation through the bloodstream, attachment to the endothelium, and invasion of the surrounding tissue where they create a microenvironnement favoring their growth. This multistep process implies various cellular interactions and molecules. Among those, we were interested in the role of the Transforming Growth Factor beta (TGF-β) and the nitric oxide (NO). Two cell lines were isolated from a rat colon tumor and assessed for their metastatic potential in vivo. The PROb cell line that expresses active TGF-β formed subcutaneous tumors in rats while the REGb cell line that expresses only latent TGF-β did not. Transfection of REGb cells with a plasmid encoding for the active form of TGF-β failed to restore their metastatic ability. Thus TGF-β secretion is not sufficient to induce colon carcinoma progression. Activities of various proteases such as APN, DPPIV and MMP were similar in both cell lines and were not regulated by TGF-β. Interactions with the endothelium as well as NO synthase activity (iNOS) and local NO concentrations are believed to be crucial steps in cancer metastasis. Coculture of the two clones with endothelial cells inhibited the cytokine-triggered activation of the iNOS enzyme in primary rat endothelial cells but only PROb cells were capable of increasing the expression of IL-6, a protumoral interleukin that may participate in the impairment of the anti-tumoral immune response of the host. Both cell lines exhibited potential to activate microglial cells but not bone marrow-derived macrophages, pointing to a differential regulation of specialized immune cells. To better understand the conflicting role of NO in breast cancer progression, two cell clones were selected from the murine tumorigenic cell line EMT-6 based on their iNOS activity and NO secretion. Although NO has been shown to inhibit cell proliferation, the two cell clones exhibited similar proliferation rates in vitro. The EMT-6H cells expressed little NO and grew actively in the lungs of syngenic mice, leading to their death. Opposite results were observed with the EMT-6J cells. In these in vivo conditions, NO seems to impair tumor growth. Both clones exhibited similar in vitro adhesive properties to primary endothelial cells isolated from various mouse organs and similar localization in the lungs of mice 48 hours after injection. Sustained metalloproteinase MMP-2 activity was detected in the tumorigenic EMT-6H clone, but not in the EMT-6J cells while other proteases such as APN and DPPIV showed no difference. These results suggested that the two clones differed in invasion steps following adhesion to the endothelium and that NO did not participate in previous steps. Consistent with this, both soluble TGF-β and supernatants of cultures of mouse primary lung fibroblasts inhibited the growth of the two clones. However, previous activation of these fibroblasts with TGF-β restored the growth of the tumorigenic EMT-6H cells, but not of EMT-6J cells. Altogether, these results indicate that the role of a given molecule, such as NO or TGF-β, must be considered in a context of interaction of tumor cells with host cells. They further imply that interaction of tumor cells with specialized immune cells and with stromal cells of the colonized organ, rather than with the endothelium, are critical in regulating metastasis.