220 resultados para Climate modeling
Resumo:
The dynamical analysis of large biological regulatory networks requires the development of scalable methods for mathematical modeling. Following the approach initially introduced by Thomas, we formalize the interactions between the components of a network in terms of discrete variables, functions, and parameters. Model simulations result in directed graphs, called state transition graphs. We are particularly interested in reachability properties and asymptotic behaviors, which correspond to terminal strongly connected components (or "attractors") in the state transition graph. A well-known problem is the exponential increase of the size of state transition graphs with the number of network components, in particular when using the biologically realistic asynchronous updating assumption. To address this problem, we have developed several complementary methods enabling the analysis of the behavior of large and complex logical models: (i) the definition of transition priority classes to simplify the dynamics; (ii) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to compact state transition graphs and directly generate compressed representations, emphasizing relevant transient and asymptotic dynamical properties. The power of an approach combining these different methods is demonstrated by applying them to a recent multilevel logical model for the network controlling CD4+ T helper cell response to antigen presentation and to a dozen cytokines. This model accounts for the differentiation of canonical Th1 and Th2 lymphocytes, as well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these methods have been implemented into the software GINsim, which enables the definition, the analysis, and the simulation of logical regulatory graphs.
Resumo:
Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.
Multimodel inference and multimodel averaging in empirical modeling of occupational exposure levels.
Resumo:
Empirical modeling of exposure levels has been popular for identifying exposure determinants in occupational hygiene. Traditional data-driven methods used to choose a model on which to base inferences have typically not accounted for the uncertainty linked to the process of selecting the final model. Several new approaches propose making statistical inferences from a set of plausible models rather than from a single model regarded as 'best'. This paper introduces the multimodel averaging approach described in the monograph by Burnham and Anderson. In their approach, a set of plausible models are defined a priori by taking into account the sample size and previous knowledge of variables influent on exposure levels. The Akaike information criterion is then calculated to evaluate the relative support of the data for each model, expressed as Akaike weight, to be interpreted as the probability of the model being the best approximating model given the model set. The model weights can then be used to rank models, quantify the evidence favoring one over another, perform multimodel prediction, estimate the relative influence of the potential predictors and estimate multimodel-averaged effects of determinants. The whole approach is illustrated with the analysis of a data set of 1500 volatile organic compound exposure levels collected by the Institute for work and health (Lausanne, Switzerland) over 20 years, each concentration having been divided by the relevant Swiss occupational exposure limit and log-transformed before analysis. Multimodel inference represents a promising procedure for modeling exposure levels that incorporates the notion that several models can be supported by the data and permits to evaluate to a certain extent model selection uncertainty, which is seldom mentioned in current practice.
Resumo:
A better understanding of the factors that mould ecological community structure is required to accurately predict community composition and to anticipate threats to ecosystems due to global changes. We tested how well stacked climate-based species distribution models (S-SDMs) could predict butterfly communities in a mountain region. It has been suggested that climate is the main force driving butterfly distribution and community structure in mountain environments, and that, as a consequence, climate-based S-SDMs should yield unbiased predictions. In contrast to this expectation, at lower altitudes, climate-based S-SDMs overpredicted butterfly species richness at sites with low plant species richness and underpredicted species richness at sites with high plant species richness. According to two indices of composition accuracy, the Sorensen index and a matching coefficient considering both absences and presences, S-SDMs were more accurate in plant-rich grasslands. Butterflies display strong and often specialised trophic interactions with plants. At lower altitudes, where land use is more intense, considering climate alone without accounting for land use influences on grassland plant richness leads to erroneous predictions of butterfly presences and absences. In contrast, at higher altitudes, where climate is the main force filtering communities, there were fewer differences between observed and predicted butterfly richness. At high altitudes, even if stochastic processes decrease the accuracy of predictions of presence, climate-based S-SDMs are able to better filter out butterfly species that are unable to cope with severe climatic conditions, providing more accurate predictions of absences. Our results suggest that predictions should account for plants in disturbed habitats at lower altitudes but that stochastic processes and heterogeneity at high altitudes may limit prediction success of climate-based S-SDMs.
Resumo:
MOTIVATION: In silico modeling of gene regulatory networks has gained some momentum recently due to increased interest in analyzing the dynamics of biological systems. This has been further facilitated by the increasing availability of experimental data on gene-gene, protein-protein and gene-protein interactions. The two dynamical properties that are often experimentally testable are perturbations and stable steady states. Although a lot of work has been done on the identification of steady states, not much work has been reported on in silico modeling of cellular differentiation processes. RESULTS: In this manuscript, we provide algorithms based on reduced ordered binary decision diagrams (ROBDDs) for Boolean modeling of gene regulatory networks. Algorithms for synchronous and asynchronous transition models have been proposed and their corresponding computational properties have been analyzed. These algorithms allow users to compute cyclic attractors of large networks that are currently not feasible using existing software. Hereby we provide a framework to analyze the effect of multiple gene perturbation protocols, and their effect on cell differentiation processes. These algorithms were validated on the T-helper model showing the correct steady state identification and Th1-Th2 cellular differentiation process. AVAILABILITY: The software binaries for Windows and Linux platforms can be downloaded from http://si2.epfl.ch/~garg/genysis.html.
Resumo:
A factor limiting preliminary rockfall hazard mapping at regional scale is often the lack of knowledge of potential source areas. Nowadays, high resolution topographic data (LiDAR) can account for realistic landscape details even at large scale. With such fine-scale morphological variability, quantitative geomorphometric analyses become a relevant approach for delineating potential rockfall instabilities. Using digital elevation model (DEM)-based ?slope families? concept over areas of similar lithology and cliffs and screes zones available from the 1:25,000 topographic map, a susceptibility rockfall hazard map was drawn up in the canton of Vaud, Switzerland, in order to provide a relevant hazard overview. Slope surfaces over morphometrically-defined thresholds angles were considered as rockfall source zones. 3D modelling (CONEFALL) was then applied on each of the estimated source zones in order to assess the maximum runout length. Comparison with known events and other rockfall hazard assessments are in good agreement, showing that it is possible to assess rockfall activities over large areas from DEM-based parameters and topographical elements.
Resumo:
Retroelements are important evolutionary forces but can be deleterious if left uncontrolled. Members of the human APOBEC3 family of cytidine deaminases can inhibit a wide range of endogenous, as well as exogenous, retroelements. These enzymes are structurally organized in one or two domains comprising a zinc-coordinating motif. APOBEC3G contains two such domains, only the C terminal of which is endowed with editing activity, while its N-terminal counterpart binds RNA, promotes homo-oligomerization, and is necessary for packaging into human immunodeficiency virus type 1 (HIV-1) virions. Here, we performed a large-scale mutagenesis-based analysis of the APOBEC3G N terminus, testing mutants for (i) inhibition of vif-defective HIV-1 infection and Alu retrotransposition, (ii) RNA binding, and (iii) oligomerization. Furthermore, in the absence of structural information on this domain, we used homology modeling to examine the positions of functionally important residues and of residues found to be under positive selection by phylogenetic analyses of primate APOBEC3G genes. Our results reveal the importance of a predicted RNA binding dimerization interface both for packaging into HIV-1 virions and inhibition of both HIV-1 infection and Alu transposition. We further found that the HIV-1-blocking activity of APOBEC3G N-terminal mutants defective for packaging can be almost entirely rescued if their virion incorporation is forced by fusion with Vpr, indicating that the corresponding region of APOBEC3G plays little role in other aspects of its action against this pathogen. Interestingly, residues forming the APOBEC3G dimer interface are highly conserved, contrasting with the rapid evolution of two neighboring surface-exposed amino acid patches, one targeted by the Vif protein of primate lentiviruses and the other of yet-undefined function.
Resumo:
In the past decade aquifers have increasingly become palaeoclimatic archives in their own right alongside ice cores, sediments and other proxy records. The main tool for this task has been the noble gas palaeo-thermometer in combination with quantitative groundwater dating using radionuclides. Noblegas radionuclides play a unique role as tracers in environmental studies due to their chemical inertness and low concentration making them ideal tracers. The same properties on the other hand make them difficult to measure on natural concentration levels. Therefore for decades low level counting (LLC) was the only method for detecting radioisotopes of argon and krypton at an atmospheric level. In recent times and with the increase of interest and potential applications the analytical efforts with novel detection methods have been intensified. In the talk noble gas groundwater dating techniques over times scales from decades to millions of years are discussed in relation to noble gas palaeo records at different locations in Europe and elsewhere.
Resumo:
Aim To explore the respective power of climate and topography to predict the distribution of reptiles in Switzerland, hence at a mesoscale level. A more detailed knowledge of these relationships, in combination with maps of the potential distribution derived from the models, is a valuable contribution to the design of conservation strategies. Location All of Switzerland. Methods Generalized linear models are used to derive predictive habitat distribution models from eco-geographical predictors in a geographical information system, using species data from a field survey conducted between 1980 and 1999. Results The maximum amount of deviance explained by climatic models is 65%, and 50% by topographical models. Low values were obtained with both sets of predictors for three species that are widely distributed in all parts of the country (Anguis fragilis , Coronella austriaca , and Natrix natrix), a result that suggests that including other important predictors, such as resources, should improve the models in further studies. With respect to topographical predictors, low values were also obtained for two species where we anticipated a strong response to aspect and slope, Podarcis muralis and Vipera aspis . Main conclusions Overall, both models and maps derived from climatic predictors more closely match the actual reptile distributions than those based on topography. These results suggest that the distributional limits of reptile species with a restricted range in Switzerland are largely set by climatic, predominantly temperature-related, factors.
Resumo:
Recent progress in the experimental determination of protein structures allow to understand, at a very detailed level, the molecular recognition mechanisms that are at the basis of the living matter. This level of understanding makes it possible to design rational therapeutic approaches, in which effectors molecules are adapted or created de novo to perform a given function. An example of such an approach is drug design, were small inhibitory molecules are designed using in silico simulations and tested in vitro. In this article, we present a similar approach to rationally optimize the sequence of killer T lymphocytes receptors to make them more efficient against melanoma cells. The architecture of this translational research project is presented together with its implications both at the level of basic research as well as in the clinics.
Resumo:
Hidden Markov models (HMMs) are probabilistic models that are well adapted to many tasks in bioinformatics, for example, for predicting the occurrence of specific motifs in biological sequences. MAMOT is a command-line program for Unix-like operating systems, including MacOS X, that we developed to allow scientists to apply HMMs more easily in their research. One can define the architecture and initial parameters of the model in a text file and then use MAMOT for parameter optimization on example data, decoding (like predicting motif occurrence in sequences) and the production of stochastic sequences generated according to the probabilistic model. Two examples for which models are provided are coiled-coil domains in protein sequences and protein binding sites in DNA. A wealth of useful features include the use of pseudocounts, state tying and fixing of selected parameters in learning, and the inclusion of prior probabilities in decoding. AVAILABILITY: MAMOT is implemented in C++, and is distributed under the GNU General Public Licence (GPL). The software, documentation, and example model files can be found at http://bcf.isb-sib.ch/mamot
Resumo:
This article aims to present the conceptual and methodological framework in which models techniques for species and ecosystems distribution are developed. An historical review of concepts behind these techniques is made as well as the presentation of the major methodological steps involved in these tests. A discussion on how these approaches are useful for the development of new questions in the field of biogeography and biological conservation is generated. Finally, an application of distribution modeling techniques, using the specie Beilschmiedia miersii (belloto Del Norte) as a study case, is presented. This conceptual and methodological review as well as the example applied, seeks to clarify the usefulness and potential of distribution models techniques, with the objective to go forward in biogeography research and thus, farther progress in understanding spatial and temporal patterns of organism's distribution