103 resultados para Climate mitigation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change data and predictions for the Himalayas are very sparse and uncertain, characterized by a ?Himalayan data gap? and difficulties in predicting changes due to topographic complexity. A few reliable studies and climate change models for Nepal predict considerable changes: shorter monsoon seasons, more intensive rainfall patterns, higher temperatures, and drought. These predictions are confirmed by farmers who claim that temperatures have been increasing for the past decade and wonder why the rains have ?gone mad.? The number of hazard events, notably droughts, floods, and landslides are increasing and now account for approximately 100 deaths in Nepal annually. Other effects are drinking water shortages and shifting agricultural patterns, with many communities struggling to meet basic food security before climatic conditions started changing. The aim of this paper is to examine existing gaps between current climate models and the realities of local development planning through a case study on flood risk and drinking water management for the Municipality of Dharan in Eastern Nepal. This example highlights current challenges facing local-level governments, namely, flood and landslide mitigation, providing basic amenities ? especially an urgent lack of drinking water during the dry season ? poor local planning capacities, and limited resources. In this context, the challenge for Nepal will be to simultaneously address increasing risks caused by hazard events alongside the omnipresent food security and drinking water issues in both urban and rural areas. Local planning is needed that integrates rural development and disaster risk reduction (DRR) with knowledge about climate change considerations. The paper concludes with a critical analysis of climate change modeling and the gap between scientific data and low-tech and low capacities of local planners to access or implement adequate adaptation measures. Recommendations include the need to bridge gaps between scientific models, the local political reality and local information needs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major challenge in this era of rapid climate change is to predict changes in species distributions and their impacts on ecosystems, and, if necessary, to recommend management strategies for maintenance of biodiversity or ecosystem services. Biological invasions, studied in most biomes of the world, can provide useful analogs for some of the ecological consequences of species distribution shifts in response to climate change. Invasions illustrate the adaptive and interactive responses that can occur when species are confronted with new environmental conditions. Invasion ecology complements climate change research and provides insights into the following questions: i) how will species distributions respond to climate change? ii) how will species movement affect recipient ecosystems? and iii) should we, and if so how can we, manage species and ecosystems in the face of climate change? Invasion ecology demonstrates that a trait-based approach can help to predict spread speeds and impacts on ecosystems, and has the potential to predict climate change impacts on species ranges and recipient ecosystems. However, there is a need to analyse traits in the context of life-history and demography, the stage in the colonisation process (e.g., spread, establishment or impact), the distribution of suitable habitats in the landscape, and the novel abiotic and biotic conditions under which those traits are expressed. As is the case with climate change, invasion ecology is embedded within complex societal goals. Both disciplines converge on similar questions of "when to intervene?" and "what to do?" which call for a better understanding of the ecological processes and social values associated with changing ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The late Early Triassic sedimentary-facies evolution and carbonate carbon-isotope marine record (delta(13)C(carb)) of ammonoid-rich, outer platform settings show striking similarities between the South ChinaBlock (SCB) and the widely distant Northern Indian Margin (NIM). The studied sections are located within the Triassic Tethys Himalayan belt (Losar section, Himachal Pradesh, India) and the Nanpanjiang Basin in the South China Block (Jinya section, Guangxi Province), respectively. Carbon isotopes from the studied sections confirm the previously observed carbon cycle perturbations at a time of major paleoceanographic changes in the wake of the end-Permian biotic crisis. This study documents the coincidence between a sharp increase in the carbon isotope composition and the worldwide ammonoid evolutionary turnover (extinction followed by a radiation) occurring around the Smithian-Spathian boundary. Based on recent modeling studies on ammonoid paleobiogeography and taxonomic diversity, we demonstrate that the late Early Triassic (Smithian and Spathian) was a time of a major climate change. More precisely, the end Smithian climate can be characterized by a warm and equable climate underlined by a flat, pole-to-equator, sea surface temperature (SST) gradient, while the steep Spathian SST gradient suggests latitudinally differentiated climatic conditions. Moreover, sedimentary evidence suggests a transition from a humid and hot climate during the Smithian to a dryer climate from the Spathian onwards. By analogy with comparable carbon isotope perturbations in the Late Devonian, Jurassic and Cretaceous we propose that high atmospheric CO(2) levels could have been responsible for the observed carbon cycle disturbance at the Smithian-Spathian boundary. We suggest that the end Smithian ammonoid extinction has been essentially caused by a warm and equable climate related to an increased CO(2) flux possibly originating from a short eruptive event of the Siberian igneous province. This increase in atmospheric CO(2) concentrations could have additionally reduced the marine calcium carbonate oversaturation and weakened the calcification potential of marine organisms, including ammonoids, in late Smithian oceans. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1 Insect pests, biological invasions and climate change are considered to representmajor threats to biodiversity, ecosystem functioning, agriculture and forestry.Deriving hypothesis of contemporary and/or future potential distributions of insectpests and invasive species is becoming an important tool for predicting the spatialstructure of potential threats.2 The western corn rootworm (WCR) Diabrotica virgifera virgifera LeConte is apest of maize in North America that has invaded Europe in recent years, resultingin economic costs in terms of maize yields in both continents. The present studyaimed to estimate the dynamics of potential areas of invasion by the WCR under aclimate change scenario in the Northern Hemisphere. The areas at risk under thisscenario were assessed by comparing, using complementary approaches, the spatialprojections of current and future areas of climatic favourability of the WCR. Spatialhypothesis were generated with respect to the presence records in the native rangeof the WCR and physiological thresholds from previous empirical studies.3 We used a previously developed protocol specifically designed to estimatethe climatic favourability of the WCR. We selected the most biologicallyrelevant climatic predictors and then used multidimensional envelope (MDE) andMahalanobis distances (MD) approaches to derive potential distributions for currentand future climatic conditions.4 The results obtained showed a northward advancement of the upper physiologicallimit as a result of climate change, which might increase the strength of outbreaksat higher latitudes. In addition, both MDE and MD outputs predict the stability ofclimatic favourability for the WCR in the core of the already invaded area in Europe,which suggests that this zone would continue to experience damage from this pestin Europe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim Specialized mutualistic clades may revert and thus increase their autonomy and generalist characteristics. However, our understanding of the drivers that trigger reductions in mutualistic traits and of the consequences for the tolerance of these species to various environmental conditions remains limited. This study investigates the relationship between the environmental niche and the degree of myrmecophily (i.e. the ability to interact with ants) among members of the Lycaenidae. Location The western Swiss Alps. Methods We measured the tolerance of Lycaenidae species to low temperatures by comparing observations from a random stratified field sampling with climatic maps. We then compared the species-specific degree of myrmecophily with the species range limits at colder temperatures while controlling for phylogenetic dependence. We further evaluated whether the community-averaged degree of myrmecophily increases with temperature, as would be expected in the case of environmental filters acting on myrmecophilous species. Results Twenty-nine Lycaenidae species were found during sampling. Ancestral state reconstruction indicated that the 24 species of Polyommatinae displayed both strong myrmecophily and secondary loss of mutualism; these species were used in the subsequent statistical analyses. Species with a higher degree of ant interaction were, on average, more likely to inhabit warmer sites. Species inhabiting the coldest environments displayed little or no interaction with ants. Main conclusions Colder climates at high elevations filter out species with a high degree of myrmecophily and may have been the direct evolutionary force that promoted the loss of mutualism. A larger taxon sampling across the Holarctic may help to distinguish between the ecological and evolutionary effects of climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Executive SummaryIn Nepal, landslides are one of the major natural hazards after epidemics, killing over 100 persons per year. However, this figure is an underreported reflection of the actual impact that landslides have on livelihoods and food security in rural Nepal. With predictions of more intense rainfall patterns, landslide occurrence in the Himalayas is likely to increase and continue to be one of the major impediments to development. Due to the remoteness of many localities and lack of resources, responsibilities for disaster preparedness and response in mountain areas usually lie with the communities themselves. Everyday life is full of risk in mountains of Nepal. This is why mountain populations, as well as other populations living in harsh conditions have developed a number of coping strategies for dealing with adverse situations. Perhaps due to the dispersed and remote nature of landslides in Nepal, there have been few studies on vulnerability, coping- and mitigation strategies of landslide affected populations. There are also few recommendations available to guide authorities and populations how to reduce losses due to landslides in Nepal, and even less so, how to operationalize resilience and vulnerability.Many policy makers, international donors, NGOs and national authorities are currently asking what investments are needed to increase the so-called 'resilience' of mountain populations to deal with climate risks. However, mountain populations are already quite resilient to seasonal fluctuations, temperature variations, rainfall patterns and market prices. In spite of their resilience, they continue to live in places at risk due to high vulnerability caused by structural inequalities: access to land, resources, markets, education. This interdisciplinary thesis examines the concept of resilience by questioning its usefulness and validity as the current goal of international development and disaster risk reduction policies, its conceptual limitations and its possible scope of action. The goal of this study is two-fold: to better define and distinguish factors and relationships between resilience, vulnerability, capacities and risk; and to test and improve a participatory methodology for evaluating landslide risk that can serve as a guidance tool for improving community-based disaster risk reduction. The objective is to develop a simple methodology that can be used by NGOs, local authorities and communities to reduce losses from landslides.Through its six case studies in Central-Eastern Nepal, this study explores the relation between resilience, vulnerability and landslide risk based on interdisciplinary methods, including geological assessments of landslides, semi-structured interviews, focus groups and participatory risk mapping. For comparison, the study sites were chosen in Tehrathum, Sunsari and Dolakha Districts of Central/Eastern Nepal, to reflect a variety of landslide types, from chronic to acute, and a variety of communities, from very marginalized to very high status. The study uses the Sustainable Livelihoods Approach as its conceptual basis, which is based on the notion that access and rights to resources (natural, human/institutional, economic, environmental, physical) are the basis for coping with adversity, such as landslides. The study is also intended as a contribution to the growing literature and practices on Community Based Disaster Risk Reduction specifically adapted to landslide- prone areas.In addition to the six case studies, results include an indicator based methodology for assessing and measuring vulnerability and resilience, a composite risk assessment methodology, a typology of coping strategies and risk perceptions and a thorough analysis of the relation between risk, vulnerability and resilience. The methodology forassessing vulnerability, resilience and risk is relatively cost-effective and replicable in a low-data environment. Perhaps the major finding is that resilience is a process that defines a community's (or system's) capacity to rebound following adversity but it does not necessarily reduce vulnerability or risk, which requires addressing more structural issues related to poverty. Therefore, conclusions include a critical view of resilience as a main goal of international development and disaster risk reduction policies. It is a useful concept in the context of recovery after a disaster but it needs to be addressed in parallel with vulnerability and risk.This research was funded by an interdisciplinary grant (#26083591) from the Swiss National Science Foundation for the period 2009-2011 and a seed grant from the Faculty of Geosciences and Environment at the University of Lausanne in 2008.Résumé en françaisAu Népal, les glissements de terrain sont un des aléas les plus dévastateurs après les épidémies, causant 100 morts par an. Pourtant, ce chiffre est une sous-estimation de l'impact réel de l'effet des glissements sur les moyens de subsistance et la sécurité alimentaire au Népal. Avec des prévisions de pluies plus intenses, l'occurrence des glissements dans les Himalayas augmente et présente un obstacle au développement. Du fait de l'éloignement et du manque de ressources dans les montagnes au Népal, la responsabilité de la préparation et la réponse aux catastrophes se trouve chez les communautés elles-mêmes. Le risque fait partie de la vie quotidienne dans les montagnes du Népal. C'est pourquoi les populations montagnardes, comme d'autres populations vivant dans des milieux contraignants, ont développé des stratégies pour faire face aux situations défavorables. Peu d'études existent sur la vulnérabilité, ceci étant probablement dû à l'éloignement et pourtant, les stratégies d'adaptation et de mitigation des populations touchées par des glissements au Népal existent.Beaucoup de décideurs politiques, bailleurs de fonds, ONG et autorités nationales se demandent quels investissements sont nécessaires afin d'augmenter la 'resilience' des populations de montagne pour faire face aux changements climatiques. Pourtant, ces populations sont déjà résilientes aux fluctuations des saisons, des variations de température, des pluies et des prix des marchés. En dépit de leur résilience, ils continuent de vivre dans des endroits à fort risque à cause des vulnérabilités créées par les inégalités structurelles : l'accès à la terre, aux ressources, aux marchés et à l'éducation. Cette thèse interdisciplinaire examine le concept de la résilience en mettant en cause son utilité et sa validité en tant que but actuel des politiques internationales de développement et de réduction des risques, ainsi que ses limitations conceptuelles et ses possibles champs d'action. Le but de cette étude est double : mieux définir et distinguer les facteurs et relations entre la résilience, la vulnérabilité, les capacités et le risque ; Et tester et améliorer une méthode participative pour évaluer le risque des glissements qui peut servir en tant qu'outil indicatif pour améliorer la réduction des risques des communautés. Le but est de développer une méthodologie simple qui peut être utilisée par des ONG, autorités locales et communautés pour réduire les pertes dues aux glissements.A travers les études de cas au centre-est du Népal, cette étude explore le rapport entre la résilience, la vulnérabilité et les glissements basée sur des méthodes interdisciplinaires ; Y sont inclus des évaluations géologiques des glissements, des entretiens semi-dirigés, des discussions de groupes et des cartes de risques participatives. Pour la comparaison, les zones d'études ont été sélectionnées dans les districts de Tehrathum, Sunsari et Dolakha dans le centre-est du Népal, afin de refléter différents types de glissements, de chroniques à urgents, ainsi que différentes communautés, variant de très marginalisées à très haut statut. Pour son cadre conceptuel, cette étude s'appuie sur l'approche de moyens de subsistance durable, qui est basée sur les notions d'accès et de droit aux ressources (naturelles, humaines/institutionnelles, économiques, environnementales, physiques) et qui sont le minimum pour faire face à des situations difficiles, comme des glissements. Cette étude se veut aussi une contribution à la littérature et aux pratiques en croissantes sur la réduction des risques communautaires, spécifiquement adaptées aux zones affectées par des glissements.En plus des six études de cas, les résultats incluent une méthodologie basée sur des indicateurs pour évaluer et mesurer la vulnérabilité et la résilience, une méthodologie sur le risque composé, une typologie de stratégies d'adaptation et perceptions des risques ainsi qu'une analyse fondamentale de la relation entre risque, vulnérabilité et résilience. Les méthodologies pour l'évaluation de la vulnérabilité, de la résilience et du risque sont relativement peu coûteuses et reproductibles dans des endroits avec peu de données disponibles. Le résultat probablement le plus pertinent est que la résilience est un processus qui définit la capacité d'une communauté (ou d'un système) à rebondir suite à une situation défavorable, mais qui ne réduit pas forcement la vulnérabilité ou le risque, et qui requiert une approche plus fondamentale s'adressant aux questions de pauvreté. Les conclusions incluent une vue critique de la résilience comme but principal des politiques internationales de développement et de réduction des risques. C'est un concept utile dans le contexte de la récupération après une catastrophe mais il doit être pris en compte au même titre que la vulnérabilité et le risque.Cette recherche a été financée par un fonds interdisciplinaire (#26083591) du Fonds National Suisse pour la période 2009-2011 et un fonds de préparation de recherches par la Faculté des Géosciences et Environnement à l'Université de Lausanne en 2008.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PREMISE OF THE STUDY: Numerous long-term studies in seasonal habitats have tracked interannual variation in first flowering date (FFD) in relation to climate, documenting the effect of warming on the FFD of many species. Despite these efforts, long-term phenological observations are still lacking for many species. If we could forecast responses based on taxonomic affinity, however, then we could leverage existing data to predict the climate-related phenological shifts of many taxa not yet studied. METHODS: We examined phenological time series of 1226 species occurrences (1031 unique species in 119 families) across seven sites in North America and England to determine whether family membership (or family mean FFD) predicts the sensitivity of FFD to standardized interannual changes in temperature and precipitation during seasonal periods before flowering and whether families differ significantly in the direction of their phenological shifts. KEY RESULTS: Patterns observed among species within and across sites are mirrored among family means across sites; early-flowering families advance their FFD in response to warming more than late-flowering families. By contrast, we found no consistent relationships among taxa between mean FFD and sensitivity to precipitation as measured here. CONCLUSIONS: Family membership can be used to identify taxa of high and low sensitivity to temperature within the seasonal, temperate zone plant communities analyzed here. The high sensitivity of early-flowering families (and the absence of early-flowering families not sensitive to temperature) may reflect plasticity in flowering time, which may be adaptive in environments where early-season conditions are highly variable among years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen and carbon isotope compositions of well-preserved mammoth teeth from the Middle Wurmian (40-70 ka) peat layer of Niederweningen, the most important mammoth site in Switzerland, were analysed to reconstruct Late Pleistocene palaeoclimatic and palaeoenvironmental conditions. Drinking water (delta(18)O values of approximately -12.3 +/- 0.9 parts per thousand were calculated front oxygen isotope compositions of mammoth tooth enamel apatite using a species-specific calibration for modern elephants. These delta(18)O(H2O) values reflect the mean oxygen isotope composition of the palaeo-precipitation and are similar to those directly measured for fate Pleistocene groundwater from aquifers in northern Switzerland and southern Germany. Using a present-day delta(18)O(H2)o-precipitation-air temperature relation for Switzerland, a mean annual air temperature (MAT) of around 4.3 +/- 2.1 degrees C can be calculated for the Middle Wurmian at this site. This MAT is in good agreement with palaeotemperature estimates on the basis of Middle Wurmian groundwater recharge temperatures and beetle assemblages. Hence, the climatic conditions in this region were around 4 degrees C cooler during the Middle Wurmian interstadial phase, around 45-50ka BP, than they are today. During this period the mammoths from Niederweningen lived in an open tundra-like, C(3) plant-dominated environment as indicated by enamel (delta(13)C values of -11.5 +/- 0.3 parts per thousand and pollen and macroplant fossils found in the embedding peat. The low variability of enamel delta(13)C and delta(18)O values from different mammoth teeth reflects similar environmental conditions and supports a relatively small time frame for the fossil assemblage. (C) 2006 Elsevier Ltd and INQUA. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding tree recruitment is needed to forecast future forest distribution. Many studies have reported the relevant ecological factors that affect recruitment success in trees, but the potential for genetic-based differences in recruitment has often been neglected. In this study, we established a semi-natural reciprocal sowing experiment to test for local adaptation and microenvironment effects (evaluated here by canopy cover) in the emergence and early survival of maritime pine (Pinus pinaster Aiton), an emblematic Mediterranean forest tree. A novel application of molecular markers was also developed to test for family selection and, thus, for potential genetic change over generations. Overall, we did not find evidence to support local adaptation at the recruitment stage in our semi-natural experiment. Moreover, only weak family selection (if any) was found, suggesting that in stressful environments with low survival, stochastic processes and among-year climate variability may drive recruitment. Nevertheless, our study revealed that, at early stages of recruitment, microenvironments may favor the population with the best adapted life strategy, irrespectively of its (local or non-local) origin. We also found that emergence time is a key factor for seedling survival in stressful Mediterranean environments. Our study highlights the complexity of the factors influencing the early stages of establishment of maritime pine and provides insights into possible management actions aimed at environmental change impact mitigation. In particular, we found that the high stochasticity of the recruitment process in stressful environments and the differences in population-specific adaptive strategies may difficult assisted migration schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many studies have forecasted the possible impact of climate change on plant distribution using models based on ecological niche theory. In their basic implementation, niche-based models do not constrain predictions by dispersal limitations. Hence, most niche-based modelling studies published so far have assumed dispersal to be either unlimited or null. However, depending on the rate of climatic change, the landscape fragmentation and the dispersal capabilities of individual species, these assumptions are likely to prove inaccurate, leading to under- or overestimation of future species distributions and yielding large uncertainty between these two extremes. As a result, the concepts of "potentially suitable" and "potentially colonisable" habitat are expected to differ significantly. To quantify to what extent these two concepts can differ, we developed MIGCLIM, a model simulating plant dispersal under climate change and landscape fragmentation scenarios. MIGCLIM implements various parameters, such as dispersal distance, increase in reproductive potential over time, barriers to dispersal or long distance dispersal. Several simulations were run for two virtual species in a study area of the western Swiss Alps, by varying dispersal distance and other parameters. Each simulation covered the hundred-year period 2001-2100 and three different IPCC-based temperature warming scenarios were considered. Our results indicate that: (i) using realistic parameter values, the future potential distributions generated using MIGCLIM can differ significantly (up to more than 95% decrease in colonized surface) from those that ignore dispersal; (ii) this divergence increases both with increasing climate warming and over longer time periods; (iii) the uncertainty associated with the warming scenario can be nearly as large as the one related to dispersal parameters; (iv) accounting for dispersal, even roughly, can importantly reduce uncertainty in projections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

River-dwelling fish, such as European graylings (Thymallus thymallus), are susceptible to changes in climate because they can often not avoid suboptimal temperatures, especially during early developmental stages. We analyzed data collected in a 62-year-long (1948-2009) population monitoring program. Male and female graylings were sampled about three times/week during the yearly spawning season in order to follow the development of the population. The occurrence of females bearing ripe eggs was used to approximate the timing of each spawning season. In the last years of the study, spawning season was more than 3 weeks earlier than in the first years. This shift was linked to increasing water temperatures as recorded over the last 39 years with a temperature logger at the spawning site. In early spring water temperatures rose more slowly than in later spring. Thus, embryos and larvae were exposed to increasingly colder water at a stage that is critical for sex determination and pathogen resistance in other salmonids. In summer, however, fry were exposed to increasingly warmer temperatures. The changes in water temperatures that we found embryos, larvae, and fry were exposed to could be contributing to the decline in abundance that has occurred over the last 30-40 years.