35 resultados para Chloride concentration profiles
Resumo:
Cytotoxic CD8 T cells exert their antiviral and antitumor activity primarily through the secretion of cytotoxic granules. Degranulation activity and cytotoxic granules (perforin plus granzymes) generally define CD8 T cells with cytotoxic function. In this study, we have investigated the expression of granzyme K (GrmK) in comparison to that of GrmA, GrmB, and perforin. The expression of the cytotoxic granules was assessed in virus-specific CD8 T cells specific to influenza virus, Epstein-Barr virus (EBV), cytomegalovirus (CMV), or human immunodeficiency virus type 1 (HIV-1). We observed a dichotomy between GrmK and perforin expression in virus-specific CD8 T cells. The profile in influenza virus-specific CD8 T cells was perforin(-) GrmB(-) GrmA(+/-) GrmK(+); in CMV-specific cells, it was perforin(+) GrmB(+) GrmA(+) GrmK(-/+); and in EBV- and HIV-1-specific cells, it was perforin(-/+) GrmB(+) GrmA(+) GrmK(+). On the basis of the delineation of memory and effector CD8 T cells with CD45RA and CD127, the GrmK(+) profile was associated with early-stage memory CD8 T-cell differentiation, the perforin(+) GrmB(+) GrmA(+) profile with advanced-stage differentiation, and the GrmB(+) GrmA(+) Grmk(+) profile with intermediate-stage differentiation. Furthermore, perforin and GrmB but not GrmA and GrmK correlated with cytotoxic activity. Finally, changes in antigen exposure in vitro and in vivo during primary HIV-1 infection and vaccination modulated cytotoxic granule profiles. These results advance our understanding of the relationship between distinct profiles of cytotoxic granules in memory CD8 T cells and function, differentiation stage, and antigen exposure.
Resumo:
The effect of high antigen dose on the activation of cytochrome c peptide-primed lymph node cells was determined in several strains of mice by a limiting dilution analysis. It was found that proliferation of cytochrome c peptide-specific T cells was completely inhibited at high antigen concentration in C57BL/6 but only partially in DBA mice and had no effect in SJL mice. Clones derived from DBA mice showed a differential capacity to be inhibited by high antigen dose. On the other hand, interleukin 2 production by these clones was not impaired regardless of the antigen concentrations used.
Resumo:
Objective: Aspergillus species are the main pathogens causing invasive fungal infections but the prevalence of other mould species is rising. Resistance to antifungals among these new emerging pathogens presents a challenge for managing of infections. Conventional susceptibility testing of non-Aspergillus species is laborious and often difficult to interpret. We evaluated a new method for real-time susceptibility testing of moulds based on their of growth-related heat production.Methods: Laboratory and clinical strains of Mucor spp. (n = 4), Scedoporium spp. (n = 4) and Fusarium spp. (n = 5) were used. Conventional MIC was determined by microbroth dilution. Isothermal microcalorimetry was performed at 37 C using Sabouraud dextrose broth (SDB) inoculated with 104 spores/ml (determined by microscopical enumeration). SDB without antifungals was used for evaluation of growth characteristics. Detection time was defined as heat flow exceeding 10 lW. For susceptibility testing serial dilutions of amphotericin B, voriconazole, posaconazole and caspofungin were used. The minimal heat inhibitory concentration (MHIC) was defined as the lowest antifungal concentration, inhbiting 50% of the heat produced by the growth control at 48 h or at 24 h for Mucor spp. Susceptibility tests were performed in duplicate.Results: Tested mould genera had distinctive heat flow profiles with a median detection time (range) of 3.4 h (1.9-4.1 h) for Mucor spp, 11.0 h (7.1-13.7 h) for Fusarium spp and 29.3 h (27.4-33.0 h) for Scedosporium spp. Graph shows heat flow (in duplicate) of one representative strain from each genus (dashed line marks detection limit). Species belonging to the same genus showed similar heat production profiles. Table shows MHIC and MIC ranges for tested moulds and antifungals.Conclusions: Microcalorimetry allowed rapid detection of growth of slow-growing species, such as Fusarium spp. and Scedosporium spp. Moreover, microcalorimetry offers a new approach for antifungal susceptibility testing of moulds, correlating with conventional MIC values. Interpretation of calorimetric susceptibility data is easy and real-time data on the effect of different antifungals on the growth of the moulds is additionally obtained. This method may be used for investigation of different mechanisms of action of antifungals, new substances and drug-drug combinations.
Resumo:
Species-specific chemical signals released through urine, sweat, saliva and feces are involved in communication between animals. Urinary biochemical constituents along with pheromones may contribute to variation across reproductive cycles and facilitate to estrus detection. Hence, the present study was designed to analyze such biochemical profiles, such as proteins, carbohydrates, lipids, fatty acids, in response with steroid hormones such as estradiol and progesterone. The experimental groups were normal, prepubertal, ovariectomized, and ovariectomized with estrogentreated female mice. In normal mice, the protein and lipid concentrations in urine were significantly higher in proestrus and estrus phases and the quantity of fatty acids was also comparatively higher in estrus. Furthermore, certain fatty acids, namely tridecanoic, palmitic and oleic acids, were present during proestrus and estrus phases, but were exclusively absent in ovariectomized mice. However, the carbohydrate level was equally maintained throughout the four phases of estrous cycle. For successful communication, higher concentrations of protein and specific fatty acids in estrus are directly involved. The significant increase in estradiol at estrus and progesterone at metestrus seems to be of greater importance in the expression pattern of biochemical constituents and may play a notable role in estrous cycle regulation. Thus, we conclude that the variations observed in the concentration of the biochemical constituents depend on the phase of the reproductive cycle as well as hormonal status of animals. The appearance of protein and specific fatty acids during estrus phase raises the possibility to use these as a urinary indicators for estrus detection.