140 resultados para Cell phenotype
Resumo:
B cells are the primary targets of infection for mouse mammary tumor virus (MMTV). However, for productive retroviral infection, T cell stimulation through the virally-encoded superantigen (SAG) is necessary. It activates B cells and leads to cell division and differentiation. To characterize the role of B cell differentiation for the MMTV life cycle, we studied the course of infection in transgenic mice deficient for CD28/CTLA4-B7 interactions (mCTLA4-H gamma 1 transgenic mice). B cell infection occurred in CTLA4-H gamma 1 transgenic mice as integrated proviral DNA could be detected in draining lymph node cells early after infection by polymerase chain reaction analysis. In mice expressing I-E, B cells were able to present the viral SAG efficiently to V beta 6+ T cells. These cells expanded specifically and were triggered to express the activation marker CD69. Further stages of progression of infection appeared to be defective. Kinetics experiments indicated that T and B cell stimulation stopped more rapidly than in control mice. B cells acquired an activated CD69+ phenotype, were induced to produce IgM but only partially switched to IgG secretion. Finally, the dissemination of infected cells to other lymph nodes and spleen was reduced and the peripheral deletion of V beta 6+ T cells was minimal. In contrast, in mice lacking I-E, T cell stimulation was also impaired and B cell activation undetectable. These data implicate B7-dependent cellular interactions for superantigenic T cell stimulation by low-affinity TCR ligands and suggest a role of B cell differentiation in viral dissemination and peripheral T cell deletion.
Resumo:
Induction of cytotoxic CD8 T-cell responses is enhanced by the exclusive presentation of antigen through dendritic cells, and by innate stimuli, such as toll-like receptor ligands. On the basis of these 2 principles, we designed a vaccine against melanoma. Specifically, we linked the melanoma-specific Melan-A/Mart-1 peptide to virus-like nanoparticles loaded with A-type CpG, a ligand for toll-like receptor 9. Melan-A/Mart-1 peptide was cross-presented, as shown in vitro with human dendritic cells and in HLA-A2 transgenic mice. A phase I/II study in stage II-IV melanoma patients showed that the vaccine was well tolerated, and that 14/22 patients generated ex vivo detectable T-cell responses, with in part multifunctional T cells capable to degranulate and produce IFN-γ, TNF-α, and IL-2. No significant influence of the route of immunization (subcutaneous versus intradermal) nor dosing regimen (weekly versus daily clusters) could be observed. It is interesting to note that, relatively large fractions of responding specific T cells exhibited a central memory phenotype, more than what is achieved by other nonlive vaccines. We conclude that vaccination with CpG loaded virus-like nanoparticles is associated with a human CD8 T-cell response with properties of a potential long-term immune protection from the disease.
Resumo:
Experimental leishmaniasis offers a well characterized model of T helper type 1 cell (Th1)-mediated control of infection by an intracellular organism. Susceptible BALB/c mice aberrantly develop Th2 cells in response to infection and are unable to control parasite dissemination. The early CD4(+) T cell response in these mice is oligoclonal and reflects the expansion of Vbeta4/ Valpha8-bearing T cells in response to a single epitope from the parasite Leishmania homologue of mammalian RACK1 (LACK) antigen. Interleukin 4 (IL-4) generated by these cells is believed to direct the subsequent Th2 response. We used T cells from T cell receptor-transgenic mice expressing such a Vbeta4/Valpha8 receptor to characterize altered peptide ligands with similar affinity for I-Ad. Such altered ligands failed to activate IL-4 production from transgenic LACK-specific T cells or following injection into BALB/c mice. Pretreatment of susceptible mice with altered peptide ligands substantially altered the course of subsequent infection. The ability to confer a healer phenotype on otherwise susceptible mice using altered peptides that differed by a single amino acid suggests limited diversity in the endogenous T cell repertoire recognizing this antigen.
Resumo:
ABSTRACT : The epidermis, the outermost compartment of the skin, is a stratified and squamous epithelium that constantly self-renews. Keratinocytes, which represent the main epidermal population, are responsible for its cohesion and barrier function. Epidermal renewal necessitates a fine equilibrium between keratinocyte proliferation and differentiation. The keratinocyte stem cell, located in the basal cell layer, is responsible for epidermal homeostasis and regeneration during the wound healing process. The transcription factor p63 structurally belongs to the p53 superfamily. It is expressed in the basal and supra-basal cell layers of stratified epithelia and is thought to be important for the renewal or the differentiation of keratinocyte stem cells (Yang et al., 1999; Mills et al., 1999). In order to better understand its function, we established an in vitro model of p63 deficient human keratinocyte stem cells using a shp63 mediated RNA interference. Knockdown of endogenous p63 induces downregulation of cell-adhesion genes as previously described (Carroll et al., 2006). Interestingly, the replating of attached p63-knockdown keratinocytes on a feeder layer results in a loss of attachment and proliferation. They are no longer clonogenic. However, if the same population are replated in a fibrin matrix, extended fibrinolysis is reported, a common process in wound healing, suggesting that p63 regulates the fibrinolytic pathway. This result was confirmed by Q-PCR and shows that the urokinase pathway, which mediates fibrinolysis, is upregulated. Altogether, these findings suggest a mechanism in which the fine tuning of p63 expression promotes attachment or release of the keratinocyte stem cell from the basement membrane by inducing genes of adhesion and/or of fibrinolysis. This mechanism may be important for epidermal self-renewal, differentiation as well as wound healing. Its misregulation may be partly responsible for the p63 knockout phenotype. The downregulation of p63 also induces a decrease in LEKTI expression. LEKTI (lymphoepithelial Kazal-type serine protease inhibitor) is a serine protease inhibitor encoded by the Spink5 gene. It is expressed and secreted in the uppermost differentiated layers of stratified epithelia and plays a role in the desquamation process. When this gene is disrupted, humans develop the Netherton syndrome (Chavanas et al., 2000b). It is a dermatosis characterized by hair dysplasias, ichtyosiform erythroderma and impairment in epidermal barrier function promoting inflammation similarly as in psoriasis with inflammatory infiltrate in excess. TNFα (tumor necrosis factor alpha) and EDA1 (ectodysplasin A1) are two transmembraneprecursors that belong to the TNF superfamily, which is involved in immune and inflammation regulation (Smahi et al., 2002). We suggest that the secreted serine protease inhibitor LEKTI plays a role in the regulation of TNFα and EDA1 precursor cleavage and absence of LEKTI induces excess of inflammation. To investigate this hypothesis, we induced downregulation of Spink5 expression in rat keratinocyte stem cells by using a shSpink5 mediated RNA interference approach. Interestingly, expression of TNFα and EDA1 is modified after knockdown of Spink5 by Q-PCR. Moreover, downregulation of Spink5 induces loss of cohesiveness between keratinocytes and colonies adopt a scattered phenotype. Altogether, these preliminary data suggest that downregulation of LEKTI may play a role in the inflammatory response in Netherton syndrome patients, by regulating TNFα expression.
Resumo:
Cancer-testis (CT) antigens comprise families of tumor-associated antigens that are immunogenic in patients with various cancers. Their restricted expression makes them attractive targets for immunotherapy. The aim of this study was to determine the expression of several CT genes and evaluate their prognostic value in head and neck squamous cell carcinoma (HNSCC). The pattern and level of expression of 12 CT genes (MAGE-A1, MAGE-A3, MAGE-A4, MAGE-A10, MAGE-C2, NY-ESO-1, LAGE-1, SSX-2, SSX-4, BAGE, GAGE-1/2, GAGE-3/4) and the tumor-associated antigen encoding genes PRAME, HERV-K-MEL, and NA-17A were evaluated by RT-PCR in a panel of 57 primary HNSCC. Over 80% of the tumors expressed at least 1 CT gene. Coexpression of three or more genes was detected in 59% of the patients. MAGE-A4 (60%), MAGE-A3 (51%), PRAME (49%) and HERV-K-MEL (42%) were the most frequently expressed genes. Overall, the pattern of expression of CT genes indicated a coordinate regulation; however there was no correlation between expression of MAGE-A3/A4 and BORIS, a gene whose product has been implicated in CT gene activation. The presence of MAGE-A and NY-ESO-1 proteins was verified by immunohistochemistry. Analysis of the correlation between mRNA expression of CT genes with clinico-pathological characteristics and clinical outcome revealed that patients with tumors positive for MAGE-A4 or multiple CT gene expression had a poorer overall survival. Furthermore, MAGE-A4 mRNA positivity was prognostic of poor outcome independent of clinical parameters. These findings indicate that expression of CT genes is associated with a more malignant phenotype and suggest their usefulness as prognostic markers in HNSCC.
Resumo:
A BALB/c cloned T cell line directed against beef apo cytochrome c was shown to exhibit the Lyt-1+2- cell surface phenotype. The fine specificity of antigen recognition exhibited by the T cell clone was assessed by using a variety of peptide preparations obtained from cytochrome c of different sources. The peptide segment recognized by this T cell clone, in conjunction with I-A region gene products, appeared similar to that bound by a monoclonal antibody specific for beef apo cytochrome c derived from the same strain of mice.
Resumo:
Previous clinical observations and data from mouse models with defects in lipid metabolism suggested that epineurial adipocytes may play a role in peripheral nervous system myelination. We have used adipocyte-specific Lpin1 knockout mice to characterize the consequences of the presence of impaired epineurial adipocytes on the myelinating peripheral nerve. Our data revealed that the capacity of Schwann cells to establish myelin, and the functional properties of peripheral nerves, were not affected by compromised epineurial adipocytes in adipocyte-specific Lpin1 knockout mice. To evaluate the possibility that Lpin1-negative adipocytes are still able to support endoneurial Schwann cells, we also characterized sciatic nerves from mice carrying epiblast-specific deletion of peroxisome proliferator-activated receptor gamma, which develop general lipoatrophy. Interestingly, even the complete loss of adipocytes in the epineurium of peroxisome proliferator-activated receptor gamma knockout mice did not lead to detectable defects in Schwann cell myelination. However, probably as a consequence of their hyperglycemia, these mice have reduced nerve conduction velocity, thus mimicking the phenotype observed under diabetic condition. Together, our data indicate that while adipocytes, as regulators of lipid and glucose homeostasis, play a role in nerve function, their presence in epineurium is not essential for establishment or maintenance of proper myelin.
Resumo:
Continuous turnover of epithelia is ensured by the extensive self-renewal capacity of tissue-specific stem cells. Similarly, epithelial tumour maintenance relies on cancer stem cells (CSCs), which co-opt stem cell properties. For most tumours, the cellular origin of these CSCs and regulatory pathways essential for sustaining stemness have not been identified. In murine skin, follicular morphogenesis is driven by bulge stem cells that specifically express CD34. Here we identify a population of cells in early epidermal tumours characterized by phenotypic and functional similarities to normal bulge skin stem cells. This population contains CSCs, which are the only cells with tumour initiation properties. Transplants derived from these CSCs preserve the hierarchical organization of the primary tumour. We describe beta-catenin signalling as being essential in sustaining the CSC phenotype. Ablation of the beta-catenin gene results in the loss of CSCs and complete tumour regression. In addition, we provide evidence for the involvement of increased beta-catenin signalling in malignant human squamous cell carcinomas. Because Wnt/beta-catenin signalling is not essential for normal epidermal homeostasis, such a mechanistic difference may thus be targeted to eliminate CSCs and consequently eradicate squamous cell carcinomas.
Resumo:
The NLRP3 inflammasome acts as a danger signal sensor that triggers and coordinates the inflammatory response upon infectious insults or tissue injury and damage. However, the role of the NLRP3 inflammasome in natural killer (NK) cell-mediated control of tumor immunity is poorly understood. Here, we show in a model of chemical-induced carcinogenesis and a series of experimental and spontaneous metastases models that mice lacking NLRP3 display significantly reduced tumor burden than control wild-type (WT) mice. The suppression of spontaneous and experimental tumor metastases and methylcholanthrene (MCA)-induced sarcomas in mice deficient for NLRP3 was NK cell and IFN-γ-dependent. Focusing on the amenable B16F10 experimental lung metastases model, we determined that expression of NLRP3 in bone marrow-derived cells was necessary for optimal tumor metastasis. Tumor-driven expansion of CD11b(+)Gr-1(intermediate) (Gr-1(int)) myeloid cells within the lung tumor microenvironment of NLRP3(-/-) mice was coincident with increased lung infiltrating activated NK cells and an enhanced antimetastatic response. The CD11b(+)Gr-1(int) myeloid cells displayed a unique cell surface phenotype and were characterized by their elevated production of CCL5 and CXCL9 chemokines. Adoptive transfer of this population into WT mice enhanced NK cell numbers in, and suppression of, B16F10 lung metastases. Together, these data suggested that NLRP3 is an important suppressor of NK cell-mediated control of carcinogenesis and metastases and identify CD11b(+)Gr-1(int) myeloid cells that promote NK cell antimetastatic function. Cancer Res; 72(22); 5721-32. ©2012 AACR.
Resumo:
Peripheral arterial disease (PAD) is a common disease with increasing prevalence, presenting with impaired walking ability affecting patient's quality of life. PAD epidemiology is known, however, mechanisms underlying functional muscle impairment remain unclear. Using a mouse PAD model, aim of this study was to assess muscle adaptive responses during early (1 week) and late (5 weeks) disease stages. Unilateral hindlimb ischemia was induced in ApoE(-/-) mice by iliac artery ligation. Ischemic limb perfusion and oxygenation (Laser Doppler imaging, transcutaneous oxygen pressure assessments) significantly decreased during early and late stage compared to pre-ischemia, however, values were significantly higher during late versus early phase. Number of arterioles and arteriogenesis-linked gene expression increased at later stage. Walking ability, evaluated by forced and voluntary walking tests, remained significantly decreased both at early and late phase without any significant improvement. Muscle glucose uptake ([18F]fluorodeoxyglucose positron emission tomography) significantly increased during early ischemia decreasing at later stage. Gene expression analysis showed significant shift in muscle M1/M2 macrophages and Th1/Th2 T cells balance toward pro-inflammatory phenotype during early ischemia; later, inflammatory state returned to neutrality. Muscular M1/M2 shift inhibition by a statin prevented impaired walking ability in early ischemia. High-energy phosphate metabolism remained unchanged (31-Phosphorus magnetic resonance spectroscopy). Results show that rapid transient muscular inflammation contributes to impaired walking capacity while increased glucose uptake may be a compensatory mechanisms preserving immediate limb viability during early ischemia in a mouse PAD model. With time, increased ischemic limb perfusion and oxygenation assure muscle viability although not sufficiently to improve walking impairment. Subsequent decreased muscle glucose uptake may partly contribute to chronic walking impairment. Early inflammation inhibition and/or late muscle glucose impairment prevention are promising strategies for PAD management.
Resumo:
Notch proteins are cell surface receptors that mediate developmental cell specification events. To explore the function of murine Notch1, an essential portion of the gene was flanked with loxP sites and inactivation induced via interferon-regulated Cre recombinase. Mice with a neonatally induced loss of Notch1 function were transiently growth retarded and had a severe deficiency in thymocyte development. Competitive repopulation of lethally irradiated wild-type hosts with wild-type- and Notch1-deficient bone marrow revealed a cell autonomous blockage in T cell development at an early stage, before expression of T cell lineage markers. Notch1-deficient bone marrow did, however, contribute normally to all other hematopoietic lineages. These findings suggest that Notch1 plays an obligatory and selective role in T cell lineage induction.
Resumo:
The t(8;21) chromosomal translocation activates aberrant expression of the AML1-ETO (AE) fusion protein and is commonly associated with core binding factor acute myeloid leukaemia (CBF AML). Combining a conditional mouse model that closely resembles the slow evolution and the mosaic AE expression pattern of human t(8;21) CBF AML with global transcriptome sequencing, we find that disease progression was characterized by two principal pathogenic mechanisms. Initially, AE expression modified the lineage potential of haematopoietic stem cells (HSCs), resulting in the selective expansion of the myeloid compartment at the expense of normal erythro- and lymphopoiesis. This lineage skewing was followed by a second substantial rewiring of transcriptional networks occurring in the trajectory to manifest leukaemia. We also find that both HSC and lineage-restricted granulocyte macrophage progenitors (GMPs) acquired leukaemic stem cell (LSC) potential being capable of initiating and maintaining the disease. Finally, our data demonstrate that long-term expression of AE induces an indolent myeloproliferative disease (MPD)-like myeloid leukaemia phenotype with complete penetrance and that acute inactivation of AE function is a potential novel therapeutic option.
Resumo:
B lymphocytes are considered to play a minimal role in host defense against Leishmania major. In this study, the contribution of B cells to susceptibility to infection with different strains of L. major was investigated in BALB/c mice lacking mature B cells due to the disruption of the IgM transmembrane domain (microMT). Whereas BALB/c microMT remained susceptible to infection with L. major IR173 and IR75, they were partially resistant to infection with L. major LV39. Adoptive transfer of naive B cells into BALB/c microMT mice before infection restored susceptibility to infection with L. major LV39, demonstrating a role for B cells in susceptibility to infection with this parasite. In contrast, adoptive transfer of B cells that express an IgM/IgD specific for hen egg lysozyme (HEL), an irrelevant Ag, did not restore disease progression in BALB/c microMT mice infected with L. major LV39. This finding was likely due to the inability of HEL Tg B cells to internalize and present Leishmania Ags to specific T cells. Furthermore, specific Ig did not contribute to disease progression as assessed by transfer of immune serum in BALB/c microMT mice. These data suggest that direct Ag presentation by specific B cells and not Ig effector functions is involved in susceptibility of BALB/c mice to infection with L. major LV39.
Resumo:
Minor lymphocyte stimulating (Mls) antigens specifically stimulate T cell responses that are restricted to particular T cell receptor (TCR) beta chain variable domains. The Mls phenotype is genetically controlled by an open reading frame (orf) located in the 3' long terminal repeat of mouse mammary tumor virus (MMTV); however, the mechanism of action of the orf gene product is unknown. Whereas predicted orf amino acid sequences show strong overall homology, the 20-30 COOH-terminal residues are strikingly polymorphic. This polymorphic region correlates with TCR V beta specificity. We have generated monoclonal antibodies to a synthetic peptide encompassing the 19 COOH-terminal amino acid residues of Mtv-7 orf, which encodes the Mls-1a determinant. We show here that these antibodies block Mls responses in vitro and can interfere specifically with thymic clonal deletion of Mls-1a reactive V beta 6+ T cells in neonatal mice. Furthermore, the antibodies can inhibit V beta 6+ T cell responses in vivo to an infectious MMTV that shares orf sequence homology and TCR specificity with Mtv-7. These results confirm the predicted extracellular localization of the orf COOH terminus and imply that the orf proteins of both endogenous and exogenous MMTV interact directly with TCR V beta.
Resumo:
The plasticity of mature oligodendrocytes was studied in aggregating brain cell cultures at the period of maximal expression of myelin marker proteins. The protein kinase C (PKC)-activating tumor promoters mezerein and phorbol 12-myristate 13-acetate (PMA), but not the inactive phorbol ester analog 4alpha-PMA, caused a pronounced decrease of myelin basic protein (MBP) content and 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) activity. In contrast, myelin/oligodendrocyte protein (MOG) content was affected relatively little. Northern blot analyses showed a rapid reduction of MBP and PLP gene expression induced by mezerein, and both morphological and biochemical findings indicate a drastic loss of compact myelin. During the acute phase of demyelination, only a relatively small increase in cell death was perceptible by in situ end labeling and in situ nick translation. Basic fibroblast growth factor (bFGF) also reduced the levels of the oligodendroglial differentiation markers and enhanced the demyelinating effects of the tumor promoters. The present results suggest that PKC activation resulted in severe demyelination and partial loss of the oligodendrocyte-differentiated phenotype.