144 resultados para Causal networks methodology
Resumo:
BACKGROUND/AIMS: For many therapeutic decisions in Crohn's disease (CD), high-grade evidence is lacking. To assist clinical decision-making, explicit panel-based appropriateness criteria were developed by an international, multidisciplinary expert panel. METHODS: 10 gastroenterologists, 3 surgeons and 2 general practitioners from 12 European countries assessed the appropriateness of therapy for CD using the RAND Appropriateness Method. Their assessment was based on the study of a recent literature review of the subject, combined with their own expert clinical judgment. Panelists rated clinical indications and treatment options using a 9-point scale (1 = extremely inappropriate; 9 = extremely appropriate). These scenarios were then discussed in detail at the panel meeting and re-rated. Median ratings and disagreement were used to aggregate ratings into three assessment categories: appropriate (A), uncertain (U) and inappropriate (I). RESULTS: 569 specific indications were rated, dealing with 9 clinical presentations: mild/moderate luminal CD (n = 104), severe CD (n = 126), steroid-dependent CD (n = 25), steroid-refractory CD (n = 37), fistulizing CD (n = 49), fibrostenotic CD (n = 35), maintenance of medical remission of CD (n = 84), maintenance of surgical remission (n = 78), drug safety in pregnancy (n = 24) and use of infliximab (n = 7). Overall, 146 indications (26%) were judged appropriate, 129 (23%) uncertain and 294 (52%) inappropriate. Frank disagreement was low (14% overall) with the greatest disagreement (54% of scenarios) being observed for treatment of steroid-refractory disease. CONCLUSIONS: Detailed explicit appropriateness criteria for the appropriate use of therapy for CD were developed for the first time by a European expert panel. Disease location, severity and previous treatments were the main factors taken into account. User-friendly access to EPACT criteria is available via an Internet site, www.epact.ch, allowing prospective evaluation and improvement of appropriateness of current CD therapy.
Resumo:
Purpose - The purpose of this paper is to document the outcome of a global three-year long supply chain improvement initiative at a multi-national producer of branded sporting goods that is transforming from a holding structure to an integrated company. The case company is comprised of seven internationally well-known sport brands, which form a diverse set of independent sub-cases, on which the same supply chain metrics and change project approach was applied to improve supply chain performance. Design/methodology/approach - By using in-depth case study and statistical analysis the paper analyzes across the brands how supply chain complexity (SKU count), supply chain type (make or buy) and seasonality affect completeness and punctuality of deliveries, and inventory as the change project progresses. Findings - Results show that reduction in supply chain complexity improves delivery performance, but has no impact on inventory. Supply chain type has no impact on service level, but brands with in-house production are better in improving inventory than those with outsourced production. Non-seasonal business units improve service faster than seasonal ones, yet there is no impact on inventory. Research limitations/implications - The longitudinal data used for the analysis is biased with the general business trend, yet the rich data from different cases and three-years of data collection enables generalizations to a certain level. Practical implications - The in-depth case study serves as an example for other companies on how to initiate a supply chain improvement project across business units with tangible results. Originality/value - The seven sub-cases with their different characteristics on which the same improvement initiative was applied sets a unique ground for longitudinal analysis to study supply chain complexity, type and seasonality.
Resumo:
Human imaging studies examining fear conditioning have mainly focused on the neural responses to conditioned cues. In contrast, the neural basis of the unconditioned response and the mechanisms by which fear modulates inter-regional functional coupling have received limited attention. We examined the neural responses to an unconditioned stimulus using a partial-reinforcement fear conditioning paradigm and functional MRI. The analysis focused on: (1) the effects of an unconditioned stimulus (an electric shock) that was either expected and actually delivered, or expected but not delivered, and (2) on how related brain activity changed across conditioning trials, and (3) how shock expectation influenced inter-regional coupling within the fear network. We found that: (1) the delivery of the shock engaged the red nucleus, amygdale, dorsal striatum, insula, somatosensory and cingulate cortices, (2) when the shock was expected but not delivered, only the red nucleus, the anterior insular and dorsal anterior cingulate cortices showed activity increases that were sustained across trials, and (3) psycho-physiological interaction analysis demonstrated that fear led to increased red nucleus coupling to insula but decreased hippocampus coupling to the red nucleus, thalamus and cerebellum. The hippocampus and the anterior insula may serve as hubs facilitating the switch between engagement of a defensive immediate fear network and a resting network.
Resumo:
The dissertation investigates some relevant metaphysical issues arising in the context of spacetime theories. In particular, the inquiry focuses on general relativity and canonical quantum gravity. A formal definition of spacetime theory is proposed and, against this framework, an analysis of the notions of general covariance, symmetry and background independence is performed. It is argued that many conceptual issues in general relativity and canonical quantum gravity derive from putting excessive emphasis on general covariance as an ontological prin-ciple. An original metaphysical position grounded in scientific essential- ism and causal realism (weak essentialism) is developed and defended. It is argued that, in the context of general relativity, weak essentialism supports spacetime substantivalism. It is also shown that weak essentialism escapes arguments from metaphysical underdetermination by positing a particular kind of causation, dubbed geometric. The proposed interpretive framework is then applied to Bohmian mechanics, pointing out that weak essentialism nicely fits into this theory. In the end, a possible Bohmian implementation of loop quantum gravity is considered, and such a Bohmian approach is interpreted in a geometric causal fashion. Under this interpretation, Bohmian loop quantum gravity straightforwardly commits us to an ontology of elementary extensions of space whose evolution is described by a non-local law. The causal mechanism underlying this evolution clarifies many conceptual issues related to the emergence of classical spacetime from the quantum regime. Although there is as yet no fully worked out physical theory of quantum gravity, it is argued that the proposed approach sets up a standard that proposals for a serious ontology in this field should meet.
Resumo:
MOTIVATION: In silico modeling of gene regulatory networks has gained some momentum recently due to increased interest in analyzing the dynamics of biological systems. This has been further facilitated by the increasing availability of experimental data on gene-gene, protein-protein and gene-protein interactions. The two dynamical properties that are often experimentally testable are perturbations and stable steady states. Although a lot of work has been done on the identification of steady states, not much work has been reported on in silico modeling of cellular differentiation processes. RESULTS: In this manuscript, we provide algorithms based on reduced ordered binary decision diagrams (ROBDDs) for Boolean modeling of gene regulatory networks. Algorithms for synchronous and asynchronous transition models have been proposed and their corresponding computational properties have been analyzed. These algorithms allow users to compute cyclic attractors of large networks that are currently not feasible using existing software. Hereby we provide a framework to analyze the effect of multiple gene perturbation protocols, and their effect on cell differentiation processes. These algorithms were validated on the T-helper model showing the correct steady state identification and Th1-Th2 cellular differentiation process. AVAILABILITY: The software binaries for Windows and Linux platforms can be downloaded from http://si2.epfl.ch/~garg/genysis.html.
Resumo:
Specific properties emerge from the structure of large networks, such as that of worldwide air traffic, including a highly hierarchical node structure and multi-level small world sub-groups that strongly influence future dynamics. We have developed clustering methods to understand the form of these structures, to identify structural properties, and to evaluate the effects of these properties. Graph clustering methods are often constructed from different components: a metric, a clustering index, and a modularity measure to assess the quality of a clustering method. To understand the impact of each of these components on the clustering method, we explore and compare different combinations. These different combinations are used to compare multilevel clustering methods to delineate the effects of geographical distance, hubs, network densities, and bridges on worldwide air passenger traffic. The ultimate goal of this methodological research is to demonstrate evidence of combined effects in the development of an air traffic network. In fact, the network can be divided into different levels of âeurooecohesionâeuro, which can be qualified and measured by comparative studies (Newman, 2002; Guimera et al., 2005; Sales-Pardo et al., 2007).
Resumo:
In humans, spatial integration develops slowly, continuing through childhood into adolescence. On the assumption that this protracted course depends on the formation of networks with slowly developing top-down connections, we compared effective connectivity in the visual cortex between 13 children (age 7-13) and 14 adults (age 21-42) using a passive perceptual task. The subjects were scanned while viewing bilateral gratings, which either obeyed Gestalt grouping rules [colinear gratings (CG)] or violated them [non-colinear gratings (NG)]. The regions of interest for dynamic causal modeling were determined from activations in functional MRI contrasts stimuli > background and CG > NG. They were symmetrically located in V1 and V3v areas of both hemispheres. We studied a common model, which contained reciprocal intrinsic and modulatory connections between these regions. An analysis of effective connectivity showed that top-down modulatory effects generated at an extrastriate level and interhemispheric modulatory effects between primary visual areas (all inhibitory) are significantly weaker in children than in adults, suggesting that the formation of feedback and interhemispheric effective connections continues into adolescence. These results are consistent with a model in which spatial integration at an extrastriate level results in top-down messages to the primary visual areas, where they are supplemented by lateral (interhemispheric) messages, making perceptual encoding more efficient and less redundant. Abnormal formation of top-down inhibitory connections can lead to the reduction of habituation observed in migraine patients.
Resumo:
The widespread use of digital imaging devices for surveillance (CCTV) and entertainment (e.g., mobile phones, compact cameras) has increased the number of images recorded and opportunities to consider the images as traces or documentation of criminal activity. The forensic science literature focuses almost exclusively on technical issues and evidence assessment [1]. Earlier steps in the investigation phase have been neglected and must be considered. This article is the first comprehensive description of a methodology to event reconstruction using images. This formal methodology was conceptualised from practical experiences and applied to different contexts and case studies to test and refine it. Based on this practical analysis, we propose a systematic approach that includes a preliminary analysis followed by four main steps. These steps form a sequence for which the results from each step rely on the previous step. However, the methodology is not linear, but it is a cyclic, iterative progression for obtaining knowledge about an event. The preliminary analysis is a pre-evaluation phase, wherein potential relevance of images is assessed. In the first step, images are detected and collected as pertinent trace material; the second step involves organising and assessing their quality and informative potential. The third step includes reconstruction using clues about space, time and actions. Finally, in the fourth step, the images are evaluated and selected as evidence. These steps are described and illustrated using practical examples. The paper outlines how images elicit information about persons, objects, space, time and actions throughout the investigation process to reconstruct an event step by step. We emphasise the hypothetico-deductive reasoning framework, which demonstrates the contribution of images to generating, refining or eliminating propositions or hypotheses. This methodology provides a sound basis for extending image use as evidence and, more generally, as clues in investigation and crime reconstruction processes.
Resumo:
Dans le contexte climatique actuel, les régions méditerranéennes connaissent une intensification des phénomènes hydrométéorologiques extrêmes. Au Maroc, le risque lié aux inondations est devenu problématique, les communautés étant vulnérables aux événements extrêmes. En effet, le développement économique et urbain rapide et mal maîtrisé augmente l'exposition aux phénomènes extrêmes. La Direction du Développement et de la Coopération suisse (DDC) s'implique activement dans la réduction des risques naturels au Maroc. La cartographie des dangers et son intégration dans l'aménagement du territoire représentent une méthode efficace afin de réduire la vulnérabilité spatiale. Ainsi, la DDC a mandaté ce projet d'adaptation de la méthode suisse de cartographie des dangers à un cas d'étude marocain (la ville de Beni Mellal, région de Tadla-Azilal, Maroc). La méthode suisse a été adaptée aux contraintes spécifiques du terrain (environnement semi-aride, morphologie de piémont) et au contexte de transfert de connaissances (caractéristiques socio-économiques et pratiques). Une carte des phénomènes d'inondations a été produite. Elle contient les témoins morphologiques et les éléments anthropiques pertinents pour le développement et l'aggravation des inondations. La modélisation de la relation pluie-débit pour des événements de référence, et le routage des hydrogrammes de crue ainsi obtenus ont permis d'estimer quantitativement l'aléa inondation. Des données obtenues sur le terrain (estimations de débit, extension de crues connues) ont permis de vérifier les résultats des modèles. Des cartes d'intensité et de probabilité ont été obtenues. Enfin, une carte indicative du danger d'inondation a été produite sur la base de la matrice suisse du danger qui croise l'intensité et la probabilité d'occurrence d'un événement pour obtenir des degrés de danger assignables au territoire étudié. En vue de l'implémentation des cartes de danger dans les documents de l'aménagement du territoire, nous nous intéressons au fonctionnement actuel de la gestion institutionnelle du risque à Beni Mellal, en étudiant le degré d'intégration de la gestion et la manière dont les connaissances sur les risques influencent le processus de gestion. L'analyse montre que la gestion est marquée par une logique de gestion hiérarchique et la priorité des mesures de protection par rapport aux mesures passives d'aménagement du territoire. Les connaissances sur le risque restent sectorielles, souvent déconnectées. L'innovation dans le domaine de la gestion du risque résulte de collaborations horizontales entre les acteurs ou avec des sources de connaissances externes (par exemple les universités). Des recommandations méthodologiques et institutionnelles issues de cette étude ont été adressées aux gestionnaires en vue de l'implémentation des cartes de danger. Plus que des outils de réduction du risque, les cartes de danger aident à transmettre des connaissances vers le public et contribuent ainsi à établir une culture du risque. - Severe rainfall events are thought to be occurring more frequently in semi-arid areas. In Morocco, flood hazard has become an important topic, notably as rapid economic development and high urbanization rates have increased the exposure of people and assets in hazard-prone areas. The Swiss Agency for Development and Cooperation (SADC) is active in natural hazard mitigation in Morocco. As hazard mapping for urban planning is thought to be a sound tool for vulnerability reduction, the SADC has financed a project aimed at adapting the Swiss approach for hazard assessment and mapping to the case of Morocco. In a knowledge transfer context, the Swiss method was adapted to the semi-arid environment, the specific piedmont morphology and to socio-economic constraints particular to the study site. Following the Swiss guidelines, a hydro-geomorphological map was established, containing all geomorphic elements related to known past floods. Next, rainfall / runoff modeling for reference events and hydraulic routing of the obtained hydrographs were carried out in order to assess hazard quantitatively. Field-collected discharge estimations and flood extent for known floods were used to verify the model results. Flood hazard intensity and probability maps were obtained. Finally, an indicative danger map as defined within the Swiss hazard assessment terminology was calculated using the Swiss hazard matrix that convolves flood intensity with its recurrence probability in order to assign flood danger degrees to the concerned territory. Danger maps become effective, as risk mitigation tools, when implemented in urban planning. We focus on how local authorities are involved in the risk management process and how knowledge about risk impacts the management. An institutional vulnerability "map" was established based on individual interviews held with the main institutional actors in flood management. Results show that flood hazard management is defined by uneven actions and relationships, it is based on top-down decision-making patterns, and focus is maintained on active mitigation measures. The institutional actors embody sectorial, often disconnected risk knowledge pools, whose relationships are dictated by the institutional hierarchy. Results show that innovation in the risk management process emerges when actors collaborate despite the established hierarchy or when they open to outer knowledge pools (e.g. the academia). Several methodological and institutional recommendations were addressed to risk management stakeholders in view of potential map implementation to planning. Hazard assessment and mapping is essential to an integrated risk management approach: more than a mitigation tool, danger maps represent tools that allow communicating on hazards and establishing a risk culture.