157 resultados para Cataract inflammation
Resumo:
Cataracts are the leading cause of blindness in most countries. Although most hereditary cases appear to follow an autosomal dominant pattern of inheritance, autosomal recessive inheritance has been clearly documented and is probably underrecognized. We studied a large family-from a relatively isolated geographic region-whose members were affected by autosomal recessive adult-onset pulverulent cataracts. We mapped the disease locus to a 14-cM interval at a novel disease locus, 9q13-q22 (between markers D9S1123 and D9S257), with a LOD score of 4.7. The study of this progressive and age-related cataract phenotype may provide insight into the cause of the more common sporadic form of age-related cataracts.
Resumo:
The c-Jun-N-terminal kinase signaling pathway (JNK) is highly activated during ischemia and plays an important role in apoptosis and inflammation. We have previously demonstrated that D-JNKI1, a specific JNK inhibitor, is strongly neuroprotective in animal models of stroke. We presently evaluated if D-JNKI1 modulates post-ischemic inflammation such as the activation and accumulation of microglial cells. Outbred CD1 mice were subjected to 45 min middle cerebral artery occlusion (MCAo). D-JNKI1 (0.1 mg/kg) or vehicle (saline) was administered intravenously 3 h after MCAo onset. Lesion size at 48 h was significantly reduced, from 28.2+/-8.5 mm(3) (n=7) to 13.9+/-6.2 mm(3) in the treated group (n=6). Activation of the JNK pathway (phosphorylation of c-Jun) was observed in neurons as well as in Isolectin B4 positive microglia. We quantified activated microglia (CD11b) by measuring the average intensity of CD11b labelling (infra-red emission) within the ischemic tissue. No significant difference was found between groups. Cerebral ischemia was modelled in vitro by subjecting rat organotypic hippocampal slice cultures to oxygen (5%) and glucose deprivation for 30 min. In vitro, D-JNKI1 was found predominantly in NeuN positive neurons of the CA1 region and in few Isolectin B4 positive microglia. Furthermore, 48 h after OGD, microglia were activated whereas resting microglia were found in controls and in D-JNKI1-treated slices. Our study shows that D-JNKI1 reduces the infarct volume 48 h after transient MCAo and does not act on the activation and accumulation of microglia at this time point. In contrast, in vitro data show an indirect effect of D-JNKI1 on the modulation of microglial activation.
Resumo:
Background/Aims: To evaluate multifocal intraocular lens (MIOL) implantation in children. Methods: This is a retrospective study evaluating refractive, visual and safety results of MIOL in pediatric cataract surgery. Average follow-up was 25.73 ± 10.5 months. Surgery included 12 o'clock clear corneal incision, anterior capsulorhexis, lens material aspiration and MIOL implantation (SN6AD3; Alcon). Results: We included 34 cataract eyes of 26 pediatric patients aged 2-15 years, of which 14 (54%) were unilateral. Best near visual acuity (BNVA) and best distance visual acuity (BDVA) improved significantly in 100% of eyes (p = 0.0001). BDVA was above 0.8 in 31.25% (5/16) of bilateral cases. Significant stereopsis improvement was observed postoperatively in bilateral cases only (p = 0.01). Conclusion: MIOL implantation is a safe alternative to monofocal pseudophakia for pediatric cataract with a very low complication rate. Significant BNVA, BDVA and stereopsis improvement can be achieved, particularly in bilateral cases. Message: This study shows significant BDVA, BNVA and stereopsis improvement, especially in bilateral cases, after MIOL implantation for pediatric cataracts. © 2013 S. Karger AG, Basel.
Resumo:
Recent evidence suggests that transient hyperglycemia in extremely low birth weight infants is strongly associated with the occurrence of retinopathy of prematurity (ROP). We propose a new model of Neonatal Hyperglycemia-induced Retinopathy (NHIR) that mimics many aspects of retinopathy of prematurity. Hyperglycemia was induced in newborn rat pups by injection of streptozocine (STZ) at post natal day one (P1). At various time points, animals were assessed for vascular abnormalities, neuronal cell death and accumulation and activation of microglial cells. We here report that streptozotocin induced a rapid and sustained increase of glycemia from P2/3 to P6 without affecting rat pups gain weight or necessitating insulin treatment. Retinal vascular area was significantly reduced in P6 hyperglycemic animals compared to control animals. Hyperglycemia was associated with (i) CCL2 chemokine induction at P6, (ii) a significant recruitment of inflammatory macrophages and an increase in total number of Iba+ macrophages/microglia cells in the inner nuclear layer (INL), and (iii) excessive apoptosis in the INL. NHIR thereby reproduces several aspects of ischemic retinopathies, including ROP and diabetic retinopathies, and might be a useful model to decipher hyperglycemia-induced cellular and molecular mechanisms in the small rodent.
Resumo:
Recent advances have stimulated new interest in the area of crystal arthritis, as microcrystals can be considered to be endogenous "danger signals" and are potent stimulators of immune as well as non-immune cells. The best known microcrystals include urate (MSU), and calcium pyrophosphate (CPP) crystals, associated with gout and pseudogout, respectively. Acute inflammation is the hallmark of the acute tissue reaction to crystals in both gout and pseudogout. The mechanisms leading to joint inflammation in these diseases involve first crystal formation and subsequent coating with serum proteins. Crystals can then interact with plasma cell membrane, either directly or via membrane receptors, leading to NLRP3 activation, proteolytic cleavage and maturation of pro-interleukin-1β (pro-IL1β) and secretion of mature IL1β. Once released, this cytokine orchestrates a series of events leading to endothelial cell activation and neutrophil recruitment. Ultimately, gout resolution involves several mechanisms including monocyte differentiation into macrophage, clearance of apoptotic neutrophils by macrophages, production of Transforming Growth Factor (TGF-β) and modification of protein coating on the crystal surface. This review will examine these different steps.
Resumo:
Paradoxically, morbid obesity was suggested to protect from cardiovascular co-morbidities as compared to overweight/obese patients. We hypothesise that this paradox could be inferred to modulation of the "endocannabinoid" system on systemic and subcutaneous adipose tissue (SAT) inflammation. We designed a translational project including clinical and in vitro studies at Geneva University Hospital. Morbid obese subjects (n=11) were submitted to gastric bypass surgery (GBS) and followed up for one year (post-GBS). Insulin resistance and circulating and SAT levels of endocannabinoids, adipocytokines and CC chemokines were assessed pre- and post-GBS and compared to a control group of normal and overweight subjects (CTL) (n=20). In vitro cultures with 3T3-L1 adipocytes were used to validate findings from clinical results. Morbid obese subjects had baseline lower insulin sensitivity and higher hs-CRP, leptin, CCL5 and anandamide (AEA) levels as compared to CTL. GBS induced a massive weight and fat mass loss, improved insulin sensitivity and lipid profile, decreased C-reactive protein, leptin, and CCL2 levels. In SAT, increased expression of resistin, CCL2, CCL5 and tumour necrosis factor and reduced MGLL were shown in morbid obese patients pre-GBS when compared to CTL. GBS increased all endocannabinoids and reduced adipocytokines and CC chemokines. In morbid obese SAT, inverse correlations independent of body mass index were shown between palmitoylethanolamide (PEA) and N-oleoylethanolamide (OEA) levels and inflammatory molecules. In vitro, OEA inhibited CCL2 secretion from adipocytes via ERK1/2 activation. In conclusion, GBS was associated with relevant clinical, metabolic and inflammatory improvements, increasing endocannabinoid levels in SAT. OEA directly reduced CCL2 secretion via ERK1/2 activation in adipocytes.
Resumo:
Myocardial infarction (MI) induces a sterile inflammatory response that contributes to adverse cardiac remodeling. The initiating mechanisms of this response remain incompletely defined. We found that necrotic cardiomyocytes released a heat-labile proinflammatory signal activating MAPKs and NF-κB in cardiac fibroblasts, with secondary production of cytokines. This response was abolished in Myd88(-/-) fibroblasts but was unaffected in nlrp3-deficient fibroblasts. Despite MyD88 dependency, the response was TLR independent, as explored in TLR reporter cells, pointing to a contribution of the IL-1 pathway. Indeed, necrotic cardiomyocytes released IL-1α, but not IL-1β, and the immune activation of cardiac fibroblasts was abrogated by an IL-1R antagonist and an IL-1α-blocking Ab. Moreover, immune responses triggered by necrotic Il1a(-/-) cardiomyocytes were markedly reduced. In vivo, mice exposed to MI released IL-1α in the plasma, and postischemic inflammation was attenuated in Il1a(-/-) mice. Thus, our findings identify IL-1α as a crucial early danger signal triggering post-MI inflammation.
Resumo:
OBJECTIVES: This study sought to investigate abnormalities in coronary circulatory function in 2 different disease entities of obese (OB) and morbidly obese (MOB) individuals and to evaluate whether these would differ in severity with different profiles of endocannabinoids, leptin, and C-reactive protein (CRP) plasma levels. BACKGROUND: There is increasing evidence that altered plasma levels of endocannabinoids, leptin, and CRP may affect coronary circulatory function in OB and MOB. METHODS: Myocardial blood flow (MBF) responses to cold pressor test from rest and during pharmacologically induced hyperemia were measured with N-13 ammonia positron emission tomography/computed tomography. Study participants (n = 111) were divided into 4 groups based on their body mass index (BMI) (kg/m(2)): 1) control group (BMI: 20 to 24.9, n = 30); 2) overweight group (BMI: 25 to 29.9, n = 31), 3) OB group (BMI: 30 to 39.9, n = 25); and 4) MOB group (BMI ≥40, n = 25). RESULTS: The cold pressor test-induced change in endothelium-related MBF response (ΔMBF) progressively declined in overweight and OB groups when compared with the control group [median: 0.19 (interquartile range [IQR] 0.08, 0.27) and 0.11 (0.03, 0.17) vs. 0.27 (0.23, 0.38) ml/g/min; p ≤ 0.01, respectively], whereas it did not differ significantly between OB and MOB groups [median: 0.11 (IQR: 0.03, 0.17) and 0.09 (-0.01, 0.19) ml/g/min; p = 0.93]. Compared with control subjects, hyperemic MBF subjects comparably declined in the overweight, OB, and MOB groups [median: 2.40 (IQR 1.92, 2.63) vs. 1.94 (1.65, 2.30), 2.05 (1.67, 2.38), and 2.14 (1.78, 2.76) ml/g/min; p ≤ 0.05, respectively]. In OB individuals, ΔMBF was inversely correlated with increase in endocannabinoid anandamide (r = -0.45, p = 0.044), but not with leptin (r = -0.02, p = 0.946) or with CRP (r = -0.33, p = 0.168). Conversely, there was a significant and positive correlation among ΔMBF and elevated leptin (r = 0.43, p = 0.031) and CRP (r = 0.55, p = 0.006), respectively, in MOB individuals that was not observed for endocannabinoid anandamide (r = 0.07, p = 0.740). CONCLUSIONS: Contrasting associations of altered coronary endothelial function with increases in endocannabinoid anandamide, leptin, and CRP plasma levels identify and characterize OB and MOB as different disease entities affecting coronary circulatory function.
Resumo:
Background: Several markers of atherosclerosis and of inflammation have been shown to predict coronary heart disease (CHD) individually. However, the utility of markers of atherosclerosis and of inflammation on prediction of CHD over traditional risk factors has not been well established, especially in the elderly. Methods: We studied 2202 men and women, aged 70-79, without baseline cardiovascular disease over 6-year follow-up to assess the risk of incident CHD associated with baseline noninvasive measures of atherosclerosis (ankle-arm index [AAI], aortic pulse wave velocity [aPWV]) and inflammatory markers (interleukin-6 [IL-6], C-reactive protein [CRP], tumor necrosis factor-a [TNF-a]). CHD events were studied as either nonfatal myocardial infarction or coronary death ("hard" events), and "hard" events plus hospitalization for angina, or the need for coronary-revascularization procedures (total CHD events). Results: During the 6-year follow-up, 283 participants had CHD events (including 136 "hard" events). IL-6, TNF-a and AAI independently predicted CHD events above Framingham Risk Score (FRS) with hazard ratios [HR] for the highest as compared with the lowest quartile for IL-6 of 1.95 (95%CI: 1.38-2.75, p for trend <0.001), TNF-a of 1.45 (95%CI: 1.04-2.02, p for trend 0.03), of 1.66 (95%CI: 1.19-2.31) for AAI 0.9, as compared to AAI 1.01-1.30. CRP and aPWV were not independently associated with CHD events. Results were similar for "hard" CHD events. Addition of IL-6 and AAI to traditional cardiovascular risk factors yielded the greatest improvement in the prediction of CHD; C-index for "hard"/total CHD events increased from 0.62/0.62 for traditional risk factors to 0.64/0.64 for IL-6 addition, 0.65/0.63 for AAI, and 0.66/0.64 for IL-6 combined with AAI. Being in the highest quartile of IL-6 combined with an AAI 0.90 or >1.40 yielded an HR of 2.51 (1.50-4.19) and 4.55 (1.65-12.50) above FRS, respectively. With use of CHD risk categories, risk prediction at 5 years was more accurate in models that included IL-6, AAI or both, with 8.0, 8.3 and 12.1% correctly reclassified, respectively. Conclusions: Among older adults, markers of atherosclerosis and of inflammation, particularly IL-6 and AAI, are independently associated with CHD. However, these markers only modestly improve cardiovascular risk prediction beyond traditional risk factors.
Resumo:
Systemic autoinflammatory diseases are caused by abnormal activation of the cells that mediate innate immunity. In the past two decades, single-gene defects in different pathways, driving clinically distinct autoinflammatory syndromes, have been identified. Studies of these aberrant pathways have substantially advanced understanding of the cellular mechanisms that contribute to mounting effective and balanced innate immune responses. For example, mutations affecting the function of cytosolic immune sensors known as inflammasomes and the IL-1 signalling pathway can trigger excessive inflammation. A surge in discovery of new genes associated with autoinflammation has pointed to other mechanisms of disease linking innate immune responses to a number of basic cellular pathways, such as maintenance of protein homeostasis (proteostasis), protein misfolding and clearance, endoplasmic reticulum stress and mitochondrial stress, metabolic stress, autophagy and abnormalities in differentiation and development of myeloid cells. Although the spectrum of autoinflammatory diseases has been steadily expanding, a substantial number of patients remain undiagnosed. Next-generation sequencing technologies will be instrumental in finding disease-causing mutations in as yet uncharacterized diseases. As more patients are reported to have clinical features of autoinflammation and immunodeficiency or autoimmunity, the complex interactions between the innate and adaptive immune systems are unveiled.
Resumo:
Background Airborne microbial products have been reported to promote immune responses that suppress asthma, yet how these beneficial effects take place remains controversial and poorly understood. Methods We exposed mice to the bacterium Escherichia coli and subsequently induced allergic airway inflammation through sensitization and intranasal challenge with ovalbumin. Results Pulmonary exposure to the bacterium Escherichia coli leads to a suppression of allergic airway inflammation. This immune modulation was neither mediated by the induction of a T helper 1 (Th1) response nor regulatory T cells; however, it was dependent on Toll-like receptor 4 (TLR4) but did not involve TLR desensitisation. Dendritic cell migration to the draining lymph nodes and activation of T cells was unaffected by prior exposure to E.coli, while dendritic cells in the lung displayed a less activated phenotype and had impaired antigen presentation capacity. Consequently, in situ Th2 cytokine production was abrogated. The suppression of airway hyper-responsiveness was mediated through the recruitment of gd T cells; however, the suppression of dendritic cells and T cells was mediated through a distinct mechanism that could not be overcome by the local administration of activated dendritic cells, or by the in vivo administration of tumour necrosis factor a. Conclusion Our data reveal a localized immunoregulatory pathway that acts to protect the airways from allergic inflammation.
Resumo:
Résumé L'objectif de cette étude est la compréhension des mécanismes sous-jacents à l'inflammation articulaire dans un modèle murin d'arthrite induite par le zymosan (ZIA). En particulier, la participation du récepteur Toll 2 (TLR2) et du complément C3 a été recherchée. L'inflammation articulaire a été quantifiée par l'accumulation de Technetium (Tc) in vivo, et par histologie des articulations arthritiques. Les réponses humorales et cellulaires induites par le zymosan ont été quantifiées par la prolifération lymphocytaire in vitro et par la mesure de la production d'anticorps dirigés contre le zymosan in vivo. L'inflammation associée à l'arthrite induite au zymosan est, d'après le Tc-uptake, d'aspect biphasique, avec un pic après 1 jour, puis une deuxième phase plus tardive. La deuxième phase persiste jusqu'au 24 ème jour et est associée au développement d'une immunité spécifique contre le zymosan. Les souris déficientes pour TLR-2 présentent une réduction significative de l'inflammation articulaire précoce (jour 1) et tardive (jour 24), ainsi qu'une nette diminution de l'infiltrat inflammatoire dans la membrane synoviale. De plus, la prolifération de cellules du ganglion lymphatique ainsi que le taux d'IgG dirigés contre le zymosan sont diminués de façon significative après 25 jour d'arthrite chez les souris déficientes en TLR2 par rapport aux souris sauvages contrôles. Par contraste, chez les souris déficientes pour C3 on n'observe pas de différence dans l'uptake de Tc ou le scoring histologique par rapport à la lignée sauvage. Ces résultats montrent que l'arthrite induite au zymosan n'est pas seulement un modèle d'inflammation aigue, mais que l'inflammation synoviale persiste même après 25 jours. Ce modèle implique à la fois des mécanismes d'immunité innée et acquise. Le signalling via TLR 2 semble jouer in rôle dans l'immunité au zymosan et pourrait être responsable de la nature biphasique de ce modèle d'arthrite. Abstract The interplay between the innate and acquired immune systems in chronic inflammation is not well documented. We have investigated the mechanisms of inflammation in murine zymosan-induced arthritis (ZIA) in the light of recent data on the roles of Toll-like receptor 2 (TLR2) and Dentin-1 in the activation of monocyte/macrophages by zymosan. The severity of inflammation, joint histology, lymphocyte proliferation and antibody production in response to zymosan were analyzed in mice deficient in TLR2 and complement C3, and the effects of Dentin-1 inhibition by laminarin were studied. In comparison with wild-type animals, TLR2-deficient mice showed a significant decrease in the early (day 1) and late phases (day 24) of joint inflammation. C3-deficient mice showed no differences in technetium uptake or histological scoring. TLR2-deficient mice also showed a significant decrease in lymph node cell proliferation in response to zymosan and a lower IgG antibody response to zymosan at day 25 in comparison with wild-type controls, indicating that TLR2 signalling has a role in the development of acquired immune responses to zymosan. Although laminarin, a soluble β-glucan, was able to significantly inhibit zymosan uptake by macrophages in vitro, it had no effect on ZIA in vivo. These results show that ZIA is more prolonged than was originally described and involves both the innate and acquired immune pathways. C3 does not seem to have a major role in this model of joint inflammation.
Resumo:
Background Surgery of radiation-induced cataracts in children with retinoblastoma (RB) is a challenge as early intervention is weighted against the need to delay surgery until complete tumour control is obtained. This study analyses the safety and functional results of such surgery. Methods In a retrospective, non-comparative, consecutive case series, we reviewed medical records of RB patients </=14 y of age who underwent either external beam radiotherapy or plaque treatment and were operated for radiation-induced cataract between 1985 and 2008. Results In total, 21 eyes of 20 RB patients were included and 18 out of the 21 eyes had Reese-Ellsworth stage V or ABC classification group D/E RB. Median interval between last treatment for RB and cataract surgery was 21.5 months, range 3-164 months. Phacoaspiration was performed in 13 eyes (61%), extra-capsular cataract extraction in 8 (39%) and intraocular lens implantation in 19 eyes (90%). The majority of cases, 11/21 (52%), underwent posterior capsulorhexis or capsulotomy and 6/21 (28%) an anterior vitrectomy. Postoperative visual acuity was >/=20/200 in 13 eyes and <20/200 in 5 eyes. Intraocular tumour recurrence was noted in three eyes. Mean postoperative follow up was 90 months+/-69 months. Conclusions Modern cataract surgery, including clear cornea approach, lens aspiration with posterior capsulotomy, anterior vitrectomy and IOL implantation is a safe procedure for radiation-induced cataract as long as RB is controlled. The visual prognosis is limited by initial tumour involvement of the macula and by corneal complications of radiotherapy. We recommend a minimal interval of 9 months between completion of treatment of retinoblastoma and cataract surgery.