35 resultados para CYCLOHEXANE ADSORPTION
Resumo:
Using a sensitive immunohistochemical technique, the localization of neuropeptide Y (NPY) Y1-receptor (Y1R)-like immunoreactivity (LI) was studied in various peripheral tissues of rat. Wild-type (WT) and Y1R-knockout (KO) mice were also analyzed. Y1R-LI was found in small arteries and arterioles in many tissues, with particularly high levels in the thyroid and parathyroid glands. In the thyroid gland, Y1R-LI was seen in blood vessel walls lacking alpha-smooth muscle actin, i.e., perhaps in endothelial cells of capillaries. Larger arteries lacked detectable Y1R-LI. A distinct Y1R-immunoreactive (IR) reticulum was seen in the WT mouse spleen, but not in Y1R-KO mouse or rat. In the gastrointestinal tract, Y1R-positive neurons were observed in the myenteric plexus, and a few enteroendocrine cells were Y1R-IR. Some cells in islets of Langerhans in the pancreas were Y1R-positive, and double immunostaining showed coexistence with somatostatin in D-cells. In the urogenital tract, Y1R-LI was observed in the collecting tubule cells of the renal papillae and in some epithelial cells of the seminal vesicle. Some chromaffin cells of adrenal medulla were positive for Y1R. The problem of the specificity of the Y1R-LI is evaluated using adsorption tests as well as comparisons among rat, WT mouse, and mouse with deleted Y1R. Our findings support many earlier studies based on other methodologies, showing that Y1Rs on smooth muscle cells of blood vessels mediate NPY-induced vasoconstriction in various organs. In addition, Y1Rs in other cells in parenchymal tissues of several organs suggest nonvascular effects of NPY via the Y1R.
Resumo:
Exposure to PM10 and PM2.5 (particulate matter with aerodynamic diameter smaller than 10 μm and 2.5 μm, respectively) is associated with a range of adverse health effects, including cancer, pulmonary and cardiovascular diseases. Surface characteristics (chemical reactivity, surface area) are considered of prime importance to understand the mechanisms which lead to harmful effects. A hypothetical mechanism to explain these adverse effects is the ability of components (organics, metal ions) adsorbed on these particles to generate Reactive Oxygen Species (ROS), and thereby to cause oxidative stress in biological systems (Donaldson et al., 2003). ROS can attack almost any cellular structure, like DNA or cellular membrane, leading to the formation of a wide variety of degradation products which can be used as a biomarker of oxidative stress. The aim of the present research project is to test whether there is a correlation between the exposure to Diesel Exhaust Particulate (DEP) and the oxidative stress status. For that purpose, a survey has been conducted in real occupational situations where workers were exposed to DEP (bus depots). Different exposure variables have been considered: - particulate number, size distribution and surface area (SMPS); - particulate mass - PM2.5 and PM4 (gravimetry); - elemental and organic carbon (coulometry); - total adsorbed heavy metals - iron, copper, manganese (atomic adsorption); - surface functional groups present on aerosols (Knudsen flow reactor). Several biomarkers of oxidative stress (8-hydroxy-2'-deoxyguanosine and several aldehydes) have been determined either in urine or serum of volunteers. Results obtained during the sampling campaign in several bus depots indicated that the occupational exposure to particulates in these places was rather low (40-50 μg/m3 for PM4). Bimodal size distributions were generally observed (5 μm and <1 μm). Surface characteristics of PM4 varied strongly, depending on the bus depot. They were usually characterized by high carbonyl and low acidic sites content. Among the different biomarkers which have been analyzed within the framework of this study, mean urinary levels of 8-hydroxy-2'-deoxyguanosine increased significantly (p<0.05) during two consecutive days of exposure for non-smoker workers. On the other hand, no statistically significant differences were observed for serum levels of hexanal, nonanal and 4- hydroxy-nonenal (p>0.05). Biomarkers levels will be compared to exposure variables to gain a better understanding of the relation between the particulate characteristics and the formation of ROS by-products. This project is financed by the Swiss State Secretariat for Education and Research. It is conducted within the framework of the COST Action 633 "Particulate Matter - Properties Related to Health Effects".
Resumo:
In the wake of the 1989 Exxon Valdez oil spill, spatially and temporally spill-correlated biological effects consistent with polycyclic aromatic hydrocarbon (PAH) exposure were observed. Some works have proposed that confounding sources from local source rocks, prominently coals, are the provenance of the PAHs. Representative coal deposits along the southeast Alaskan coast (Kulthieth Formation) were sampled and fully characterized chemically and geologically. The coals have variable but high total organic carbon content technically classifying as coals and coaly shale, and highly varying PAH contents. Even for coals with high PAH content (approximately 4000 ppm total PAHs), a PAH-sensitive bacterial biosensor demonstrates nondetectable bioavailability as quantified, based on naphthalene as a test calibrant. These results are consistent with studies indicating that materials such as coals strongly diminish the bioavailability of hydrophobic organic compounds and support previous work suggesting that hydrocarbons associated with the regional background in northern Gulf of Alaska marine sediments are not appreciably bioavailable.
Resumo:
Introduction et objectif: Lors d'essais cliniques, le pharmacien est responsable de la préparation et de la dispensation des médicaments à évaluer. Un article récent a toutefois montré que les aspects pharmaceutiques liés au contrôle de la dose administrée in fine étaient souvent mal contrôlés. Il peut exister une différence entre la dose nominale fournie par le certificat d'analyse du fabricant et la dose réellement administrée au sujet, biais qui se reporte en cascade sur l'estimation des paramètres pharmacocinétiques (PK), comme la clairance ou le volume de distribution. Ce travail visait à évaluer les biais entachant la quantité de médicament réellement injectée (iv/sc) aux volontaires d'un essai clinique étudiant la PK et la relation dose-réponse d'un nouveau produit biotechnologique. Méthode: La dose de médicament administrée lors de l'essai clinique (D) a été calculée de la manière suivante: D = C * V - pertes. La concentration du produit (C; titre nominal du fabricant) a été vérifiée par immuno-essai. Le volume de médicament injecté (V) a été déterminé pour chaque injection par pesée (n=72), en utilisant la masse de la seringue avant et après injection et la densité du produit. Enfin, une analyse in vitro a permis d'évaluer les pertes liées à l'adsorption du produit dans les lignes de perfusion et de choisir le dispositif adéquat in vivo. Résultats: La concentration du médicament s'est révélée proche du titre nominal (96 ± 7%), et a été utilisée comme référence. Le volume injecté était quant à lui entaché d'un biais systématique par rapport à la valeur théorique correspondant à 0.03 mL pour la dose minimale (i.e. 75% du volume à injecter à cette dose). Une analyse complémentaire a montré que cela s'expliquait par une réaspiration partielle de la solution médica-menteuse avant le retrait de la seringue après injection sc, due à l'élasticité du piston. En iv, le biais était par contre provoqué par une réaspiration du soluté de perfusion co-administré. Enfin, la mesure des quantités de médicament récupérées après injection dans le dispositif de perfusion a démontré des pertes minimales par adsorption. Discussion-conclusion: Cette étude confirme l'existence de biais inversement corrélés au volume et à la concentration du médicament administré, pouvant provoquer des erreurs importantes sur les paramètres PK. Ce problème est négligé ou insuffisamment considéré dans les protocoles de Phase I et nécessiterait une planification rigoureuse. Les procédures opératoires devraient attirer l'attention sur ce point crucial.
Resumo:
We analyzed 42 models from 14 brands of refill liquids for e-cigarettes for the presence of micro-organisms, diethylene glycol, ethylene glycol, hydrocarbons, ethanol, aldehydes, tobacco-specific nitrosamines, and solvents. All the liquids under scrutiny complied with norms for the absence of yeast, mold, aerobic microbes, Staphylococcus aureus, and Pseudomonas aeruginosa. Diethylene glycol, ethylene glycol and ethanol were detected, but remained within limits authorized for food and pharmaceutical products. Terpenic compounds and aldehydes were found in the products, in particular formaldehyde and acrolein. No sample contained nitrosamines at levels above the limit of detection (1 μg/g). Residual solvents such as 1,3-butadiene, cyclohexane and acetone, to name a few, were found in some products. None of the products under scrutiny were totally exempt of potentially toxic compounds. However, for products other than nicotine, the oral acute toxicity of the e-liquids tested seems to be of minor concern. However, a minority of liquids, especially those with flavorings, showed particularly high ranges of chemicals, causing concerns about their potential toxicity in case of chronic oral exposure.