128 resultados para CPR artifacts


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Black-blood fast spin-echo imaging is a powerful technique for the evaluation of cardiac anatomy. To avoid fold-over artifacts, using a sufficiently large field of view in phase-encoding direction is mandatory. The related oversampling affects scanning time and respiratory chest motion artifacts are commonly observed. The excitation of a volume that exclusively includes the heart without its surrounding structures may help to improve scan efficiency and minimize motion artifacts. Therefore, and by building on previously reported inner-volume approach, the combination of a black-blood fast spin-echo sequence with a two-dimensionally selective radiofrequency pulse is proposed for selective "local excitation" small field of view imaging of the heart. This local excitation technique has been developed, implemented, and tested in phantoms and in vivo. With this method, small field of view imaging of a user-specified region in the human thorax is feasible, scanning becomes more time efficient, motion artifacts can be minimized, and additional flexibility in the choice of imaging parameters can be exploited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To compare three spin-echo sequences, transverse T1-weighted (T1WI), transverse fat-saturated (FS) T2-weighted (T2WI), and transverse gadolinium-enhanced (Gd) FS T1WI, for the visualisation of normal and abnormal finger A2 pulley with magnetic resonance (MR) imaging at 3 tesla (T). MATERIALS AND METHODS: Sixty-three fingers from 21 patients were consecutively investigated. Two musculoskeletal radiologists retrospectively compared all sequences to assess the visibility of normal and abnormal A2 pulleys and the presence of motion or ghost artefacts. RESULTS: Normal and abnormal A2 pulleys were visible in 94% (59/63) and 95% (60/63) on T1WI sequences, in 63% (40/63) and 60% (38/63) on FS T2WI sequences, and in 87% (55/63) and 73% (46/63) on Gd FS T1WI sequences when read by the first and second observer, respectively. Motion and ghost artefacts were higher on FS T2WI sequences. Seven among eight abnormal A2 pulleys were detected, and were best depicted with Gd FS T1WI sequences in 71% (5/7) and 86% (6/7) by the first and the second observer, respectively. CONCLUSION: In 3-T MRI, the comparison between transverse T1WI, FS T2WI, and Gd FS T1WI sequences shows that transverse T1WI allows excellent depiction of the A2 pulley, that FS T2WI suffers from a higher rate of motion and ghost artefacts, and transverse Gd FS T1WI is the best sequence for the depiction of abnormal A2 pulley.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: The majority of convulsions are due to an epileptic seizure or a convulsive syncope. The incidence of out-of-hospital cardiac arrest (OH-CA) presenting as a convulsion is unknown. Objective: This study aimed to measure the incidence of adult nontraumatic OH-CA presenting as a convulsion, a rate that has not been published so far, to the best of our knowledge. Methods: We prospectively collected all incoming calls with an out-of-hospital nontraumatic seizure as the chief complaint in patients >18 years old during a 24-month period. Among these calls, we collected cases identified as OH-CA by paramedics. Results: During the 24-month period, the emergency medical services (EMS) dispatch center received 561 calls for an out-of-hospital nontraumatic convulsion in an adult. Twelve cases were ultimately classified as CA. In this group, one bystander spontaneously reported that the patient was known for epilepsy. The incidence of OH-CA presenting as convulsions was therefore 2.1% of all calls for convulsion. Over the same period, the EMS dispatch center received 1,035 calls related to an adult nontraumatic OH-CA. Therefore, the rate of OH-CA presenting as a convulsion represented 1.2% of all adult nontraumatic OH-CA. Conclusion:L Only 12 cases out of the 531 calls for nontraumatic adult convulsions were confirmed OHCA (2.1%). Nevertheless, this unusual presentation of OH-CA must be recognized by dispatchers, even when a patient is reported by bystander as a known epileptic. Dispatchers should keep bystanders on the line or call them back before paramedics' arrival, and have them confirm the progressive return of a normal pat- tern of breathing and state of consciousness; if not, they should encourage the bystander to initiate CPR when necessary. An intervention should be implemented to improve the detection by dispatchers of OH-CA presenting as convulsion by the development of a specific interview and directed observation. For dispatchers, a past medical history of epilepsy should not be regarded as sufficient information to rule out OH-CA. It is mandatory that known epileptic patients should be monitored in the same way as nonepileptic patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Navigator-gated and corrected 3D coronary MR angiography (MRA) allows submillimeter image acquisition during free breathing. However, cranial diaphragmatic drift and relative phase shifts of chest-wall motion are limiting factors for image quality and scanning duration. We hypothesized that image acquisition in the prone position would minimize artifacts related to chest-wall motion and suppress diaphragmatic drift. Twelve patients with radiographically-confirmed coronary artery disease and six healthy adult volunteers were studied in both the prone and the supine position during free-breathing navigator-gated and corrected 3D coronary MRA. Image quality and the diaphragmatic positions were objectively compared. In the prone position, there was a 36% improvement in signal-to-noise ratio (SNR; 15.5 +/- 2.7 vs. 11.4 +/- 2.6; P < 0.01) and a 34% improvement in CNR (12.5 +/- 3.3 vs. 9.3 +/- 2.5, P < 0.01). The prone position also resulted in a 17% improvement in coronary vessel definition (P < 0.01). Cranial end-expiratory diaphragmatic drift occurred less frequently in the prone position (23% +/- 17% vs. 40% +/- 26% supine; P <0.05), and navigator efficiency was higher. Prone coronary MRA results in improved SNR and CNR with enhanced coronary vessel definition. Cranial end-expiratory diaphragmatic drift also was reduced, and navigator efficiency was enhanced. When feasible, prone imaging is recommended for free-breathing coronary MRA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diffusion-weighted spin-echo imaging of the spine has been successfully implemented for differentiation of benign fracture edema and tumor infiltration of the vertebral body. Nevertheless, this technique still suffers from insufficient image quality in numerous patients due to motion artifacts. The aim of this study was to investigate the impact of variable respiratory motion artifact suppression techniques on image quality in diffusion-weighted spin-echo imaging of the spine. In addition to phase-encoding reordering, a newly implemented right hemi-diaphragmaitc navigator for respiratory gating was used. Subjective and objective image quality parameters were compared. Respiratory motion artifact suppression has a major impact on image quality in diffusion-weighted imaging of the spine. Phase-encoding reordering does not enhance image quality while right hemi-diaphragmatic respiratory navigator gating significantly improves image quality at the cost of data acquisition time. Navigator gating should be used if standard spin-echo diffusion-weighted imaging demonstrates insufficient image quality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The in situ nuclear matrix was obtained from HeLa cells. After permeabilization with nonionic detergent, the resulting structures were incubated for 1 h at 37 degrees C to determine whether or not such an incubation might result in the redistribution of nuclear polypeptides which resisted extraction with buffers of high-ionic strength (1.6 M NaCl or 0.25 M (NH4)2SO4 as well as DNase I digestion. Using indirect immunofluorescence experiments and monoclonal antibodies we show that heating to 37 degrees C changes the distribution of a 160 kDa protein previously shown to be a component of the inner matrix network. On the other hand, a 125 kDa polypeptide was not affected at all by the incubation. Our results clearly indicate that the inclusion of a 37 degrees C incubation (for example during digestion with DNase I) in the protocol to obtain the in situ nuclear matrix can result in the formation of in vitro artifacts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Coronary magnetic resonance angiography (MRA) is a medical imaging technique that involves collecting data from consecutive heartbeats, always at the same time in the cardiac cycle, in order to minimize heart motion artifacts. This technique relies on the assumption that coronary arteries always follow the same trajectory from heartbeat to heartbeat. Until now, choosing the acquisition window in the cardiac cycle was based exclusively on the position of minimal coronary motion. The goal of this study was to test the hypothesis that there are time intervals during the cardiac cycle when coronary beat-to-beat repositioning is optimal. The repositioning uncertainty values in these time intervals were then compared with the intervals of low coronary motion in order to propose an optimal acquisition window for coronary MRA. Methods: Cine breath-hold x-ray angiograms with synchronous ECG were collected from 11 patients who underwent elective routine diagnostic coronarography. Twenty-three bifurcations of the left coronary artery were selected as markers to evaluate repositioning uncertainty and velocity during cardiac cycle. Each bifurcation was tracked by two observers, with the help of a user-assisted algorithm implemented in Matlab (The Mathworks, Natick, MA, USA) that compared the trajectories of the markers coming from consecutive heartbeats and computed the coronary repositioning uncertainty with steps of 50ms until 650ms after the R-wave. Repositioning uncertainty was defined as the diameter of the smallest circle encompassing the points to be compared at the same time after the R-wave. Student's t-tests with a false discovery rate (FDR, q=0.1) correction for multiple comparison were applied to see whether coronary repositioning and velocity vary statistically during cardiac cycle. Bland-Altman plots and linear regression were used to assess intra- and inter-observer agreement. Results: The analysis of left coronary artery beat-to-beat repositioning uncertainty shows a tendency to have better repositioning in mid systole (less than 0.84±0.58mm) and mid diastole (less than 0.89±0.6mm) than in the rest of the cardiac cycle (highest value at 50ms=1.35±0.64mm). According to Student's t-tests with FDR correction for multiple comparison (q=0.1), two intervals, in mid systole (150-200ms) and mid diastole (550-600ms), provide statistically better repositioning in comparison with the early systole and the early diastole. Coronary velocity analysis reveals that left coronary artery moves more slowly in end systole (14.35±11.35mm/s at 225ms) and mid diastole (11.78±11.62mm/s at 625ms) than in the rest of the cardiac cycle (highest value at 25ms: 55.96±22.34mm/s). This was confirmed by Student's t-tests with FDR correction for multiple comparison (q=0.1, FDR-corrected p-value=0.054): coronary velocity values at 225, 575 and 625ms are not much different between them but they are statistically inferior to all others. Bland-Altman plots and linear regression show that intra-observer agreement (y=0.97x+0.02 with R²=0.93 at 150ms) is better than inter-observer (y=0.8x+0.11 with R²=0.67 at 150ms). Discussion: The present study has demonstrated that there are two time intervals in the cardiac cycle, one in mid systole and one in mid diastole, where left coronary artery repositioning uncertainty reaches points of local minima. It has also been calculated that the velocity is the lowest in end systole and mid diastole. Since systole is less influenced by heart rate variability than diastole, it was finally proposed to test an acquisition window between 150 and 200ms after the R-wave.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cryo-electron microscopy of vitreous sections (CEMOVIS) has recently been shown to provide images of biological specimens with unprecedented quality and resolution. Cutting the sections remains however the major difficulty. Here, we examine the parameters influencing the quality of the sections and analyse the resulting artefacts. They are in particular: knife marks, compression, crevasses, and chatter. We propose a model taking into account the interplay between viscous flow and fracture. We confirm that crevasses are formed on only one side of the section, and define conditions by which they can be avoided. Chatter is an effect of irregular compression due to friction of the section of the knife edge and conditions to prevent this are also explored. In absence of crevasses and chatter, the bulk of the section is compressed approximately homogeneously. Within this approximation, it is possible to correct for compression by a simple linear transformation for the bulk of the section. A research program is proposed to test and refine our understanding of the sectioning process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECT: In this study the accuracy of multislice computerized tomography (MSCT) angiography in the postoperative examination of clip-occluded intracranial aneurysms was compared with that of intraarterial digital subtraction (DS) angiography METHODS: Forty-nine consecutive patients with 60 clipped aneurysms (41 of which had ruptured) were studied with the aid of postoperative MSCT and DS angiography. Both types of radiological studies were reviewed independently by two observers to assess the quality of the images, the artifacts left by the clips, the completeness of aneurysm occlusion, the patency of the parent vessel, and the duration and cost of the examination. The quality of MSCT angiography was good in 42 patients (86%). Poor-quality MSCT angiograms (14%) were a result of the late acquisition of images in three patients and the presence of clip or motion artifacts in four. Occlusion of the aneurysm on good-quality MSCT angiograms was confirmed in all but two patients in whom a small (2-mm) remnant was confirmed on DS angiograms. In one patient, occlusion of a parent vessel was seen on DS angiograms but missed on MSCT angiograms. The sensitivity and specificity for detecting neck remnants on MSCT angiography were both 100%, and the sensitivity and specificity for evaluating vessel patency were 80 and 100%, respectively (95% confidence interval 29.2-100%). Interobserver agreements were 0.765 and 0.86, respectively. The mean duration of the examination was 13 minutes for MSCT angiography and 75 minutes for DS angiography (p < 0.05). Multislice CT angiography was highly cost effective (p < 0.01). CONCLUSIONS: Current-generation MSCT angiography is an accurate noninvasive tool used for assessment of clipped aneurysms in the anterior circulation. Its high sensitivity and low cost warrant its use for postoperative routine control examinations following clip placement on an aneurysm. Digital subtraction angiography must be performed if the interpretation of MSCT angiograms is doubtful or if the aneurysm is located in the posterior circulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The resistance of mosquitoes to chemical insecticides is threatening vector control programmes worldwide. Cytochrome P450 monooxygenases (CYPs) are known to play a major role in insecticide resistance, allowing resistant insects to metabolize insecticides at a higher rate. Among them, members of the mosquito CYP6Z subfamily, like Aedes aegypti CYP6Z8 and its Anopheles gambiae orthologue CYP6Z2, have been frequently associated with pyrethroid resistance. However, their role in the pyrethroid degradation pathway remains unclear. In the present study, we created a genetically modified yeast strain overexpressing Ae. aegypti cytochrome P450 reductase and CYP6Z8, thereby producing the first mosquito P450-CPR (NADPH-cytochrome P450-reductase) complex in a yeast recombinant system. The results of the present study show that: (i) CYP6Z8 metabolizes PBAlc (3-phenoxybenzoic alcohol) and PBAld (3-phenoxybenzaldehyde), common pyrethroid metabolites produced by carboxylesterases, producing PBA (3-phenoxybenzoic acid); (ii) CYP6Z8 transcription is induced by PBAlc, PBAld and PBA; (iii) An. gambiae CYP6Z2 metabolizes PBAlc and PBAld in the same way; (iv) PBA is the major metabolite produced in vivo and is excreted without further modification; and (v) in silico modelling of substrate-enzyme interactions supports a similar role of other mosquito CYP6Zs in pyrethroid degradation. By playing a pivotal role in the degradation of pyrethroid insecticides, mosquito CYP6Zs thus represent good targets for mosquito-resistance management strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The simultaneous recording of scalp electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can provide unique insights into the dynamics of human brain function, and the increased functional sensitivity offered by ultra-high field fMRI opens exciting perspectives for the future of this multimodal approach. However, simultaneous recordings are susceptible to various types of artifacts, many of which scale with magnetic field strength and can seriously compromise both EEG and fMRI data quality in recordings above 3T. The aim of the present study was to implement and characterize an optimized setup for simultaneous EEG-fMRI in humans at 7T. The effects of EEG cable length and geometry for signal transmission between the cap and amplifiers were assessed in a phantom model, with specific attention to noise contributions from the MR scanner coldheads. Cable shortening (down to 12cm from cap to amplifiers) and bundling effectively reduced environment noise by up to 84% in average power and 91% in inter-channel power variability. Subject safety was assessed and confirmed via numerical simulations of RF power distribution and temperature measurements on a phantom model, building on the limited existing literature at ultra-high field. MRI data degradation effects due to the EEG system were characterized via B0 and B1(+) field mapping on a human volunteer, demonstrating important, although not prohibitive, B1 disruption effects. With the optimized setup, simultaneous EEG-fMRI acquisitions were performed on 5 healthy volunteers undergoing two visual paradigms: an eyes-open/eyes-closed task, and a visual evoked potential (VEP) paradigm using reversing-checkerboard stimulation. EEG data exhibited clear occipital alpha modulation and average VEPs, respectively, with concomitant BOLD signal changes. On a single-trial level, alpha power variations could be observed with relative confidence on all trials; VEP detection was more limited, although statistically significant responses could be detected in more than 50% of trials for every subject. Overall, we conclude that the proposed setup is well suited for simultaneous EEG-fMRI at 7T.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate a transverse electromagnetic (TEM), a circularly polarized (CP) (birdcage), and a 12-channel phased array head coil at the clinical field strength of B0 = 3T in terms of signal-to-noise ratio (SNR), signal homogeneity, and maps of the effective flip angle alpha. MATERIALS AND METHODS: SNR measurements were performed on low flip angle gradient echo images. In addition, flip angle maps were generated for alpha(nominal) = 30 degrees using the double angle method. These evaluation steps were performed on phantom and human brain data acquired with each coil. Moreover, the signal intensity variation was computed for phantom data using five different regions of interest. RESULTS: In terms of SNR, the TEM coil performs slightly better than the CP coil, but is second to the smaller 12-channel coil for human data. As expected, both the TEM and the CP coils show superior image intensity homogeneity than the 12-channel coil, and achieve larger mean effective flip angles than the combination of body and 12-channel coil with reduced radio frequency power deposition. CONCLUSION: At 3T the benefits of TEM coil design over conventional lumped element(s) coil design start to emerge, though the phased array coil retains an advantage with respect to SNR performance.