151 resultados para CARBOXYL-TERMINAL FRAGMENT
Resumo:
The alpha 1B-adrenergic receptor (alpha 1BAR) and its truncated mutant T368 lacking the last 147 amino acids were stably expressed in Rat1 fibroblasts. The wild type alpha 1BAR was rapidly phosphorylated upon exposure to the agonist epinephrine as well as to phorbol ester as assessed by immunoprecipitation of the receptor with antiserum raised against its amino-terminal portion. Exposure of cells expressing the wild type alpha 1BAR to epinephrine resulted also in rapid homologous desensitization of receptor-mediated response on polyphosphoinositide hydrolysis. On the other hand, truncation of the serine- and threonine-rich carboxyl portion of the alpha 1BAR abolished agonist-induced phosphorylation and greatly impaired homologous desensitization of the receptor. The truncated receptor T368 could undergo agonist-induced decrease of cell surface receptors but to a lesser extent, as compared with the wild type alpha 1BAR. These results demonstrate that the carboxyl portion of the alpha 1BAR plays a crucial role in the regulation of receptor function. They also suggest a strong relationship between agonist-induced phosphorylation and desensitization of the alpha 1BAR, which were both insensitive to the inhibitor of protein kinase C RO-318220. Our findings support the emerging hypothesis that the biochemical mechanisms involved in rapid agonist-dependent regulation of G protein-coupled receptors, which activate polyphosphoinositide hydrolysis, do not primarily involve protein kinase C.
Resumo:
Starting from a biologically active recombinant DNA clone of exogenous unintegrated GR mouse mammary tumor virus, we have generated three subclones of PstI fragments of 1.45, 1.1, and 2.0 kb in the plasmid vector PBR322. The nucleotide sequence has been determined for the clone of 1.45 kb which includes almost the complete region of the long terminal repeat (LTR) plus an adjacent stretch of unique sequence DNA. A short region of the 2.0 kb clone, containing the beginning of the LTR, has also been sequenced. Starting with the A of an initiation codon outside the LTR, we detected an open reading frame of 960 nucleotides, potentially coding for a protein of 320 amino acids (36K). Two hundred nucleotides downstream from the termination codon, and approximately 25 nucleotides upstream from the presumptive initiation site of viral RNA synthesis, we found a promoter-like sequence. The sequence AGTAAA was detected approximately 15-20 nucleotides upstream from the 3' end of virion RNA and probably serves as a polyadenylation signal. The 1.45 kb PstI fragment has been transfected into Ltk- cells together with a plasmid containing the thymidine kinase gene of herpes simplex virus. The virus-specific RNA synthesis detected in a Tk+ cell clone was strongly stimulated by the addition of dexamethasone.
Resumo:
Glycosyl phosphatidylinositol (GPI)-anchored proteins contain in their COOH-terminal region a peptide segment that is thought to direct glycolipid addition. This signal has been shown to require a pair of small amino acids positioned 10-12 residues upstream of an hydrophobic C-terminal domain. We analysed the contribution of the region separating the anchor acceptor site and the C-terminal hydrophobic segment by introducing amino acid deletions and substitutions in the spacer element of the GPI-anchored Thy-1 glycoprotein. Deletions of 7 amino acids in this region, as well as the introduction of 2 charged residues, prevented the glycolipid addition to Thy-1, suggesting that the length and the primary sequence of the spacer domain are important determinants in the signal directing GPI anchor transfer onto a newly synthesized polypeptide. Furthermore, we tested these rules by creating a truncated form of the normally transmembranous Herpes simplex virus I glycoprotein D (gDI) and demonstrating that when its C-terminal region displays all the features of a GPI-anchored protein, it is able to direct glycolipid addition onto another cell surface molecule.
Resumo:
Lymph node cells derived from A.TH or A.TL mice primed with beef cytochrome c show striking patterns of reactivity when assayed in vitro for antigen-induced T cell proliferation. Whereas cells from A.TH mice respond specifically to beef cytochrome c or peptides composed of amino acids 1-65 and 81-104, cells from A.TL mice respond neither to beef cytochrome c nor to peptide 1-65, but proliferate following exposure to either peptide 81-104 or to a cytochrome c hybrid molecule in which the N-terminal peptide of beef (1-65) was substituted by a similar peptide obtained from rabbit cytochrome c. Thus, T cells from mice phenotypically unresponsive to beef cytochrome may, in fact, contain populations of lymphocytes capable of responding to a unique peptide, the response to which is totally inhibited when the same fragment is presented in the sequence of the intact protein.
Resumo:
Two methods of differential isotopic coding of carboxylic groups have been developed to date. The first approach uses d0- or d3-methanol to convert carboxyl groups into the corresponding methyl esters. The second relies on the incorporation of two 18O atoms into the C-terminal carboxylic group during tryptic digestion of proteins in H(2)18O. However, both methods have limitations such as chromatographic separation of 1H and 2H derivatives or overlap of isotopic distributions of light and heavy forms due to small mass shifts. Here we present a new tagging approach based on the specific incorporation of sulfanilic acid into carboxylic groups. The reagent was synthesized in a heavy form (13C phenyl ring), showing no chromatographic shift and an optimal isotopic separation with a 6 Da mass shift. Moreover, sulfanilic acid allows for simplified fragmentation in matrix-assisted laser desorption/ionization (MALDI) due the charge fixation of the sulfonate group at the C-terminus of the peptide. The derivatization is simple, specific and minimizes the number of sample treatment steps that can strongly alter the sample composition. The quantification is reproducible within an order of magnitude and can be analyzed either by electrospray ionization (ESI) or MALDI. Finally, the method is able to specifically identify the C-terminal peptide of a protein by using GluC as the proteolytic enzyme.
Resumo:
Background: Plasmodium falciparum(P. falciparum) merozoite surfaceprotein 2 (MSP-2) is one of bloodstage proteins that are associated withprotection from malaria. MSP-2 consistsof a highly polymorphic centralrepeat region flanked by a dimorphicregion that defines the two allelicfamilies, 3D7 and FC27; N- and Cterminalregions are conserved domains.Long synthetic peptides (LSP)representing the two allelic familiesof MSP-2 and constant regions arerecognized by sera from donors livingin endemic areas; and specific antibodies(Abs) are associated with protectionand active in antibody dependentcellular inhibition (ADCI) in vitro.However, the fine specificity ofAb response to the two allelic familiesof MSP-2 is unknown. Methods: Peptidesrepresenting dimorphic regionof 3D7 and FC27 families and theirC-terminal (common fragment to thetwo families) termed 3D7-D (88 aa),FC27-D (48 aa) and C (40 aa) respectivelywere synthesized. Overlapping20 mer peptides covering dimorphicand constant regions of two familieswere also synthesized for epitopemapping. Human sera were obtainedfrom donors living in malaria endemicareas. SpecificDand CregionsAbs were purified from single or poolhuman sera. Sera from mice were obtainedafter immunization with thetwo families LSP mixture in three differentadjuvants: alhydrogel (Alum),Glucopyranosyl Lipid Adjuvant-Stableoil-in-water Emulsion (GLA-SE)and Virosome. For ADCI, P. falciparum(strain 3D7) parasite wasmaintained in culture at 0.5% parasitemiaand 4% hematocrit in air tightbox at love oxygen (2%) and 37 ºC.Results: We identified several epitopesfrom the dimorphic and constantregions of both families of MSP-2, inmice and humans (adults and children).In human, most recognizedepitopes were the same in differentendemic regions for each domain ofthe two families of MSP-2. In mice,the differential recognition of epitopewas depending on the strain of mouseand interestingly on the adjuvantused. GLA-SE and alum as adjuvantswere more often associated with therecognition of multiple epitopes thanvirosomes. Epitope-specific Abs recognizednative merozoites of P.falciparum and were active in ADCIto block development of parasite.Conclusion: The delineation of a limitednumber of epitopes could be exploitedto develop MSP-2 vaccinesactive on both allelic families ofMSP-2.
Resumo:
During the past few decades, numerous plasmid vectors have been developed for cloning, gene expression analysis, and genetic engineering. Cloning procedures typically rely on PCR amplification, DNA fragment restriction digestion, recovery, and ligation, but increasingly, procedures are being developed to assemble large synthetic DNAs. In this study, we developed a new gene delivery system using the integrase activity of an integrative and conjugative element (ICE). The advantage of the integrase-based delivery is that it can stably introduce a large DNA fragment (at least 75 kb) into one or more specific sites (the gene for glycine-accepting tRNA) on a target chromosome. Integrase recombination activity in Escherichia coli is kept low by using a synthetic hybrid promoter, which, however, is unleashed in the final target host, forcing the integration of the construct. Upon integration, the system is again silenced. Two variants with different genetic features were produced, one in the form of a cloning vector in E. coli and the other as a mini-transposable element by which large DNA constructs assembled in E. coli can be tagged with the integrase gene. We confirmed that the system could successfully introduce cosmid and bacterial artificial chromosome (BAC) DNAs from E. coli into the chromosome of Pseudomonas putida in a site-specific manner. The integrase delivery system works in concert with existing vector systems and could thus be a powerful tool for synthetic constructions of new metabolic pathways in a variety of host bacteria.
Resumo:
Hemorrhage and resuscitation (H/R) leads to phosphorylation of mitogen-activated stress kinases, an event that is associated with organ damage. Recently, a specific, cell-penetrating, protease-resistant inhibitory peptide of the mitogen-activated protein kinase c-JUN N-terminal kinase (JNK) was developed (D-JNKI-1). Here, using this peptide, we tested if inhibition of JNK protects against organ damage after H/R. Male Sprague-Dawley rats were treated with D-JNKI-1 (11 mg/kg, i.p.) or vehicle. Thirty minutes later, rats were hemorrhaged for 1 h to a MAP of 30 to 35 mmHg and then resuscitated with 60% of the shed blood and twice the shed blood volume as Ringer lactate. Tissues were harvested 2 h later. ANOVA with Tukey post hoc analysis or Kruskal-Wallis ANOVA on ranks, P < 0.05, was considered significant. c-JUN N-terminal kinase inhibition decreased serum alanine aminotransferase activity as a marker of liver injury by 70%, serum creatine kinase activity by 67%, and serum lactate dehydrogenase activity by 60% as compared with vehicle treatment. The histological tissue damage observed was blunted after D-JNKI-1 pretreatment both for necrotic and apoptotic cell death. Hepatic leukocyte infiltration and serum IL-6 levels were largely diminished after D-JNKI-1 pretreatment. The extent of oxidative stress as evaluated by immunohistochemical detection of 4-hydroxynonenal was largely abrogated after JNK inhibition. After JNK inhibition, activation of cJUN after H/R was also reduced. Hemorrhage and resuscitation induces a systemic inflammatory response and leads to end-organ damage. These changes are mediated, at least in part, by JNK. Therefore, JNK inhibition deserves further evaluation as a potential treatment option in patients after resuscitated blood loss.
Resumo:
Terminal heart failure can be the cause or the result of major dysfunctions of the organisms. Although, the outcome of the natural history is the same in both situations, it is of prime importance to differentiate the two, as only heart failure as the primary cause allows for successful mechanical circulatory support as bridge to transplantation or towards recovery. Various objective parameters allow for the establishment of the diagnosis of terminal heart failure despite optimal medical treatment. A cardiac index <2.0 l/min, and a mixed venous oxygen saturation <60%, in combination with progressive renal failure, should trigger a diagnostic work-up in order to identify cardiac defects that can be corrected or to list the patient for transplantation with/without mechanical circulatory support.
Resumo:
The latent membrane protein 1 (LMP1) encoded by the Epstein-Barr virus acts like a constitutively activated receptor of the tumor necrosis factor receptor (TNFR) family and is enriched in lipid rafts. We showed that LMP1 is targeted to lipid rafts in transfected HEK 293 cells, and that the endogenous TNFR-associated factor 3 binds LMP1 and is recruited to lipid rafts upon LMP1 expression. An LMP1 mutant lacking the C-terminal 55 amino acids (Cdelta55) behaves like the wild-type (WT) LMP1 with respect to membrane localization. In contrast, a mutant with a deletion of the 25 N-terminal residues (Ndelta25) does not concentrate in lipid rafts but still binds TRAF3, demonstrating that cell localization of LMP1 was not crucial for TRAF3 localization. Moreover, Ndelta25 inhibited WT LMP1-mediated induction of the transcription factors NF-kappaB and AP-1. Morphological data indicate that Ndelta25 hampers WT LMP1 plasma membrane localization, thus blocking LMP1 function.
Resumo:
The peroxisome targeting signal (PTS) required for import of the rat acyl-CoA oxidase (AOX; EC 1.3.3.6) and the Candida tropicalis multifunctional protein (MFP) in plant peroxisomes was assessed in transgenic Arabidopsis thaliana (L.) Heynh. The native rat AOX accumulated in peroxisomes in A. thaliana cotyledons and targeting was dependent on the presence of the C-terminal tripeptide S-K-L. In contrast, the native C. tropicalis MFP, containing the consensus PTS sequence A-K-I was not targeted to plant peroxisomes. Modification of the carboxy terminus to the S-K-L tripeptide also failed to deliver the MFP to peroxisomes while addition of the last 34 amino acids of the Brassica napus isocitrate lyase, containing the terminal tripeptide S-R-M, enabled import of the fusion protein into peroxisomes. These results underline the influence of the amino acids adjacent to the terminal tripeptide of the C. tropicalis MFP on peroxisomal targeting, even in the context of a protein having a consensus PTS sequence S-K-L.
Resumo:
L'insuline est une hormone qui diminue la concentration de sucre dans le sang et qui est produite par la cellule β du pancréas. Un défaut de production de cette hormone est une des causes principales du diabète. Cette perte de production d'insuline est la conséquence à la fois, de la réduction du nombre de cellules β et du mauvais fonctionnement des cellules β restantes. L'inflammation, en activant la voie de signalisation «c-Jun N-terminal Kinase» (JNK) contribue au déclin de ces cellules. Cette voie de signalisation est activée par des protéines telles que des kinases qui reçoivent le signal de stress. Dans ce travail de thèse nous nous sommes intéressés à étudier le rôle de «Dual leucine zipper bearing kinase» (DLK) comme protéine capable de relayer le stress inflammatoire vers l'activation de la voie JNK dans les cellules β-pancréatiques. Nous montrons que DLK est présente dans les cellules β-pancréatiques et qu'elle agit effectivement comme un activateur de la voie de signalisation de JNK. En outre, DLK joue un rôle clé dans le contrôle de l'expression de l'insuline, de la sécrétion de l'insuline en réponse au glucose et au maintien de la survie des cellules β. Si l'expression de cette protéine diminue, la cellule produit moins d'insuline et sera plus sensible à la mort en réponse au stress inflammatoire. A l'inverse si l'expression de DLK est augmentée, la cellule β produit et secrète plus d'insuline. Des variations de l'expression de DLK sont par ailleurs, associées à l'état de santé de la cellule β. Chez la ratte en gestation ou la souris obèse, dans lesquelles la cellule β produit plus d'insuline, l'expression de DLK est augmentée. En revanche dans les cellules β des patients diabétiques, l'expression de DLK est diminuée par rapport aux cellules non malades. En résumé, DLK est nécessaire pour le bon fonctionnement de la cellule β-pancréatique et son expression corrèle avec le degré de santé des cellules, faisant que cette protéine pourrait être une cible thérapeutique potentiel. Les cellules β-pancréatiques ont la capacité de réguler la sécrétion d'insuline en s'adaptant précisément au stimulus et à la glycémie. La fonction de la cellule β est cruciale dans l'homéostasie du glucose puisque sa dysfonction et sa mort mènent au développement des diabètes de type 1 et 2. De nombreuses études suggèrent que l'inflammation pourrait avoir un rôle dans la dysfonction et la destruction de ces cellules dans le diabète de type 2. L'excès chronique de cytokines proinflammatoires accélère le dysfonctionnement de la cellule β pancréatique par un mécanisme qui implique la voie de signalisation «c-Jun N-terminal Kinase» (JNK). L'activation de cette voie est organisée par des protéines d'échafaudages. Elle se fait par trois étapes successives de phosphorylation impliquant une «Mitogen Activated Protein Kinase Kinase Kinase» (MAP3K), une MAP2K et JNK. Dans ce travail de thèse nous montrons l'expression abondante et spécifique de la MAP3K «Dual Leucine Zipper Bearing Kinase» (DLK) dans les cellules β pancréatiques. Cela est la conséquence de l'absence du répresseur transcriptionnel «Repressor Element 1 Silencing Transcription». Nous montrons également que DLK régule l'activation de JNK et qu'il s'avère nécessaire pour la fonction et la survie de la cellule β pancréatique par un mécanisme impliquant le facteur de transcription PDX-1. L'invalidation de l'expression de DLK diminue l'expression de l'insuline et potentialise l'apoptose induite par des cytokines proinflammatoires. A l'inverse, la surexpression de DLK augmente l'expression et la sécrétion d'insuline induites par le glucose. Par conséquent des niveaux d'expression appropriés de DLK sont déterminants pour la fonction et la survie de la cellule β pancréatique. L'obésité et la grossesse sont caractérisées par une hyperinsulinémie qui résulte d'une augmentation de la production et de la sécrétion de l'insuline. L'expression de DLK est augmentée dans des îlots de rattes gestantes et des souris obèses comparés à leurs contrôles respectifs. A l'inverse, dans des sujets diabétiques, l'expression de DLK est diminuée. Ensemble ces résultats montrent l'importance de DLK dans l'adaptation des îlots par un mécanisme qui pourrait impliquer la voie de signalisation de JNK. Des défauts dans cette voie régulée par DLK pourraient contribuer au dysfonctionnement et la mort de la cellule β pancréatique et par conséquent au développement du diabète. L'étude détaillée du mécanisme par lequel DLK active la voie de signalisation JNK et régule la fonction de la cellule β pancréatique pourrait ouvrir la voie des nouvelles thérapies ciblant l'amélioration de la fonction de la cellule β dans le diabète. - Pancreatic β-cells are evidently plastic in their ability to regulate insulin secretion. The quantity of insulin released by these cells varies according to the stimulus, and the prevailing glucose concentration, β-cell function is pivotal in glucose homeostasis, as their dysfunction, and death can lead to development of type 1 and type 2 diabetes. There are numerous reports so far underlying the role of inflammation in dysfunction, and destruction of β-cells, in both type 1 and type 2 diabetes. Chronic excess of pro¬inflammatory cytokines promotes a β-cell decline, via induction of the c-Jun N-terminal Kinase (JNK) pathway. The activation of the JNK pathway is organized by a scaffold protein-mediated module in which, a three-step phosphorylation cascade occurs. The latter includes, Mitogen activated protein kinase kinase kinase (MAP3K), MAP2K and JNK. In this thesis, we unveil that the MAP3K Dual Leucine Zipper Bearing Kinase (DLK) is selectively, and highly expressed in pancreatic β-cells, as the result from the absence of the transcriptional repressor named, Repressor Element 1 Silencing Transcription (REST). We show that DLK regulates activation of JNK, and is required for β-cell function and survival by modulating the PDX-1 transcription factor. Silencing of DLK expression diminishes insulin expression, and potentiated cytokine-mediated apoptosis. Conversely, overexpression of DLK increased insulin expression, and glucose-induced insulin secretion. Therefore, an appropriate level of DLK is critical for β-cell function and survival. Obesity and pregnancy are characterized by hyperinsulinemia resulting from an increased production and secretion of insulin. In isolated islets of pregnant rats, and obese mice, the expression of DLK was elevated when compared to their respective controls. However, decreased expression of DLK was observed in islets of individuals with diabetes. Taken together, we highlight the importance of DLK in islet adaptation, and describe a mechanism that may involve the JNK signaling. Deficiency in the JNK pathway regulated by DLK may contribute to β-cell failure and death, and thereby development of diabetes. Unraveling the mechanism whereby DLK activates the JNK pathway, and β-cell function, may pave the way for the design of novel therapies, aiming to improve β-cell function and survival in diabetes in general.
Resumo:
The introduction of culture-independent molecular screening techniques, especially based on 16S rRNA gene sequences, has allowed microbiologists to examine a facet of microbial diversity not necessarily reflected by the results of culturing studies. The bacterial community structure was studied for a pesticide-contaminated site that was subsequently remediated using an efficient degradative strain Arthrobacter protophormiae RKJ100. The efficiency of the bioremediation process was assessed by monitoring the depletion of the pollutant, and the effect of addition of an exogenous strain on the existing soil community structure was determined using molecular techniques. The 16S rRNA gene pool amplified from the soil metagenome was cloned and restriction fragment length polymorphism studies revealed 46 different phylotypes on the basis of similar banding patterns. Sequencing of representative clones of each phylotype showed that the community structure of the pesticide-contaminated soil was mainly constituted by Proteobacteria and Actinomycetes. Terminal restriction fragment length polymorphism analysis showed only nonsignificant changes in community structure during the process of bioremediation. Immobilized cells of strain RKJ100 enhanced pollutant degradation but seemed to have no detectable effects on the existing bacterial community structure.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are symbiotic soil fungi that are intimately associated with the roots of the majority of land plants. They colonise the interior of the roots and the hyphae extend into the soil. It is well known that bacterial colonisation of the rhizosphere can be crucial for many pathogenic as well as symbiotic plant-microbe interactions. However, although bacteria colonising the extraradical AMF hyphae (the hyphosphere) might be equally important for AMF symbiosis, little is known regarding which bacterial species would colonise AMF hyphae. In this study, we investigated which bacterial communities might be associated with AMF hyphae. As bacterial-hyphal attachment is extremely difficult to study in situ, we designed a system to grow AMF hyphae of Glomus intraradices and Glomus proliferum and studied which bacteria separated from an agricultural soil specifically attach to the hyphae. Characterisation of attached and non-attached bacterial communities was performed using terminal restriction fragment length polymorphism and clone library sequencing of 16S ribosomal RNA (rRNA) gene fragments. For all experiments, the composition of hyphal attached bacterial communities was different from the non-attached communities, and was also different from bacterial communities that had attached to glass wool (a non-living substratum). Analysis of amplified 16S rRNA genes indicated that in particular bacteria from the family of Oxalobacteraceae were highly abundant on AMF hyphae, suggesting that they may have developed specific interactions with the fungi.