43 resultados para CAPACITANCE SPECTROSCOPY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite obvious improvements in spectral resolution at high magnetic field, the detection of 13C labeling by 1H-[13C] NMR spectroscopy remains hampered by spectral overlap, such as in the spectral region of 1H resonances bound to C3 of glutamate (Glu) and glutamine (Gln), and C6 of N-acetylaspartate (NAA). The aim of this study was to develop, implement, and apply a novel 1H-[13C] NMR spectroscopic editing scheme, dubbed "selective Resonance suppression by Adiabatic Carbon Editing and Decoupling single-voxel STimulated Echo Acquisition Mode" (RACED-STEAM). The sequence is based on the application of two asymmetric narrow-transition-band adiabatic RF inversion pulses at the resonance frequency of the 13C coupled to the protons that need to be suppressed during the mixing time (TM) period, alternating the inversion band downfield and upfield from the 13C resonance on odd and even scans, respectively, thus suppressing the detection of 1H resonances bound to 13C within the transition band of the inversion pulse. The results demonstrate the efficient suppression of 1H resonances bound to C3 of Glu and Gln, and C4 of Glu, which allows the 1H resonances bound to C6 of NAA and C4 of Gln to be revealed. The measured time course of the resolved labeling into NAA C6 with the new scheme was consistent with the slow turnover of NAA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alterations to brain homeostasis during development are reflected in the neurochemical profile determined noninvasively by (1)H magnetic resonance spectroscopy. We determined longitudinal biochemical modifications in the cortex, hippocampus, and striatum of C57BL/6 mice aged between 3 and 24 months . The regional neurochemical profile evolution indicated that aging induces general modifications of neurotransmission processes (reduced GABA and glutamate), primary energy metabolism (altered glucose, alanine, and lactate) and turnover of lipid membranes (modification of choline-containing compounds and phosphorylethanolamine), which are all probably involved in the frequently observed age-related cognitive decline. Interestingly, the neurochemical profile was different in male and female mice, particularly in the levels of taurine that may be under the control of estrogen receptors. These neurochemical profiles constitute the basal concentrations in cortex, hippocampus, and striatum of healthy aging male and female mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In (1) H magnetic resonance spectroscopy, macromolecule signals underlay metabolite signals, and knowing their contribution is necessary for reliable metabolite quantification. When macromolecule signals are measured using an inversion-recovery pulse sequence, special care needs to be taken to correctly remove residual metabolite signals to obtain a pure macromolecule spectrum. Furthermore, since a single spectrum is commonly used for quantification in multiple experiments, the impact of potential macromolecule signal variability, because of regional differences or pathologies, on metabolite quantification has to be assessed. In this study, we introduced a novel method to post-process measured macromolecule signals that offers a flexible and robust way of removing residual metabolite signals. This method was applied to investigate regional differences in the mouse brain macromolecule signals that may affect metabolite quantification when not taken into account. However, since no significant differences in metabolite quantification were detected, it was concluded that a single macromolecule spectrum can be generally used for the quantification of healthy mouse brain spectra. Alternatively, the study of a mouse model of human glioma showed several alterations of the macromolecule spectrum, including, but not limited to, increased mobile lipid signals, which had to be taken into account to avoid significant metabolite quantification errors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved measurements of tissue autofluorescence (AF) excited at 405 nm were carried out with an optical-fiber-based spectrometer in the bronchi of 11 patients. The objectives consisted of assessing the lifetime as a new tumor/normal (T/N) tissue contrast parameter and trying to explain the origin of the contrasts observed when using AF-based cancer detection imaging systems. No significant change in the AF lifetimes was found. AF bronchoscopy performed in parallel with an imaging device revealed both intensity and spectral contrasts. Our results suggest that the spectral contrast might be due to an enhanced blood concentration just below the epithelial layers of the lesion. The intensity contrast probably results from the thickening of the epithelium in the lesions. The absence of T/N lifetime contrast indicates that the quenching is not at the origin of the fluorescence intensity and spectral contrasts. These lifetimes (6.9 ns, 2.0 ns, and 0.2 ns) were consistent for all the examined sites. The fact that these lifetimes are the same for different emission domains ranging between 430 and 680 nm indicates that there is probably only one dominant fluorophore involved. The measured lifetimes suggest that this fluorophore is elastin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bradyrhizobium japonicum is a symbiotic nitrogen-fixing soil bacteria that induce root nodules formation in legume soybean (Glycine max.). Using (13)C- and (31)P-nuclear magnetic resonance (NMR) spectroscopy, we have analysed the metabolite profiles of cultivated B. japonicum cells and bacteroids isolated from soybean nodules. Our results revealed some quantitative and qualitative differences between the metabolite profiles of bacteroids and their vegetative state. This includes in bacteroids a huge accumulation of soluble carbohydrates such as trehalose, glutamate, myo-inositol and homospermidine as well as Pi, nucleotide pools and intermediates of the primary carbon metabolism. Using this novel approach, these data show that most of the compounds detected in bacteroids reflect the metabolic adaptation of rhizobia to the surrounding microenvironment with its host plant cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectroscopy combined with chemometrics has recently become a widespread technique for the analysis of pharmaceutical solid forms. The application presented in this paper is the investigation of counterfeit medicines. This increasingly serious issue involves networks that are an integral part of industrialized organized crime. Efficient analytical tools are consequently required to fight against it. Quick and reliable authentication means are needed to allow the deployment of measures from the company and the authorities. For this purpose a method in two steps has been implemented here. The first step enables the identification of pharmaceutical tablets and capsules and the detection of their counterfeits. A nonlinear classification method, the Support Vector Machines (SVM), is computed together with a correlation with the database and the detection of Active Pharmaceutical Ingredient (API) peaks in the suspect product. If a counterfeit is detected, the second step allows its chemical profiling among former counterfeits in a forensic intelligence perspective. For this second step a classification based on Principal Component Analysis (PCA) and correlation distance measurements is applied to the Raman spectra of the counterfeits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of depressed neonatal cerebral oxidative phosphorylation for diagnosing the severity of perinatal asphyxia was estimated by correlating the concentrations of phosphocreatine (PCr) and ATP as determined by magnetic resonance spectroscopy with the degree of hypoxic-ischemic encephalopathy (HIE) in 23 asphyxiated term neonates. Ten healthy age-matched neonates served as controls. In patients, the mean concentrations +/- SD of PCr and ATP were 0.99 +/- 0.46 mmol/L (1.6 +/- 0.2 mmol/L) and 0.99 +/- 0.35 mmol/L (1.7 +/- 0.2 mmol/L), respectively (normal values in parentheses). [PCr] and [ATP] correlated significantly with the severity of HIE (r = 0.85 and 0.9, respectively, p < 0.001), indicating that the neonatal encephalopathy is the clinical manifestation of a marred brain energy metabolism. Neurodevelopmental outcome was evaluated in 21 children at 3, 9, and 18 mo. Seven infants had multiple impairments, five were moderately handicapped, five had only mild symptoms, and four were normal. There was a significant correlation between the cerebral concentrations of PCr or ATP at birth and outcome (r = 0.8, p < 0.001) and between the degree of neonatal neurologic depression and outcome (r = 0.7). More important, the outcome of neonates with moderate HIE could better be predicted with information from quantitative 31P magnetic resonance spectroscopy than from neurologic examinations. In general, the accuracy of outcome predictability could significantly be increased by adding results from 31P magnetic resonance spectroscopy to the neonatal neurologic score, but not vice versa. No correlation with outcome was found for other perinatal risk factors, including Apgar score.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A collaborative study on Raman spectroscopy and microspectrophotometry (MSP) was carried out by members of the ENFSI (European Network of Forensic Science Institutes) European Fibres Group (EFG) on different dyed cotton fabrics. The detection limits of the two methods were tested on two cotton sets with a dye concentration ranging from 0.5 to 0.005% (w/w). This survey shows that it is possible to detect the presence of dye in fibres with concentrations below that detectable by the traditional methods of light microscopy and microspectrophotometry (MSP). The MSP detection limit for the dyes used in this study was found to be a concentration of 0.5% (w/w). At this concentration, the fibres appear colourless with light microscopy. Raman spectroscopy clearly shows a higher potential to detect concentrations of dyes as low as 0.05% for the yellow dye RY145 and 0.005% for the blue dye RB221. This detection limit was found to depend both on the chemical composition of the dye itself and on the analytical conditions, particularly the laser wavelength. Furthermore, analysis of binary mixtures of dyes showed that while the minor dye was detected at 1.5% (w/w) (30% of the total dye concentration) using microspectrophotometry, it was detected at a level as low as 0.05% (w/w) (10% of the total dye concentration) using Raman spectroscopy. This work also highlights the importance of a flexible Raman instrument equipped with several lasers at different wavelengths for the analysis of dyed fibres. The operator and the set up of the analytical conditions are also of prime importance in order to obtain high quality spectra. Changing the laser wavelength is important to detect different dyes in a mixture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been a lack of quick, simple and reliable methods for determination of nanoparticle size. An investigation of the size of hydrophobic (CdSe) and hydrophilic (CdSe/ZnS) quantum dots was performed by using the maximum position of the corresponding fluorescence spectrum. It has been found that fluorescence spectroscopy is a simple and reliable methodology to estimate the size of both quantum dot types. For a given solution, the homogeneity of the size of quantum dots is correlated to the relationship between the fluorescence maximum position (FMP) and the quantum dot size. This methodology can be extended to the other fluorescent nanoparticles. The employment of evolving factor analysis and multivariate curve resolution-alternating least squares for decomposition of the series of quantum dots fluorescence spectra recorded by a specific measuring procedure reveals the number of quantum dot fractions having different diameters. The size of the quantum dots in a particular group is defined by the FMP of the corresponding component in the decomposed spectrum. These results show that a combination of the fluorescence and appropriate statistical method for decomposition of the emission spectra of nanoparticles may be a quick and trusted method for the screening of the inhomogeneity of their solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brain uses lactate produced by glycolysis as an energy source. How lactate originated from the blood stream is used to fuel brain metabolism is not clear. The current study measures brain metabolic fluxes and estimates the amount of pyruvate that becomes labeled in glial and neuronal compartments upon infusion of [3-(13) C]lactate. For that, labeling incorporation into carbons of glutamate and glutamine was measured by (13) C magnetic resonance spectroscopy at 14.1 T and analyzed with a two-compartment model of brain metabolism to estimate rates of mitochondrial oxidation, glial pyruvate carboxylation, and the glutamate-glutamine cycle as well as pyruvate fractional enrichments. Extracerebral lactate at supraphysiological levels contributes at least two-fold more to replenish the neuronal than the glial pyruvate pools. The rates of mitochondrial oxidation in neurons and glia, pyruvate carboxylase, and glutamate-glutamine cycles were similar to those estimated by administration of (13) C-enriched glucose, the main fuel of brain energy metabolism. These results are in agreement with primary utilization of exogenous lactate in neurons rather than astrocytes. © 2014 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(13)C magnetic resonance spectroscopy (MRS) combined with the administration of (13)C labeled substrates uniquely allows to measure metabolic fluxes in vivo in the brain of humans and rats. The extension to mouse models may provide exclusive prospect for the investigation of models of human diseases. In the present study, the short-echo-time (TE) full-sensitivity (1)H-[(13)C] MRS sequence combined with high magnetic field (14.1 T) and infusion of [U-(13)C6] glucose was used to enhance the experimental sensitivity in vivo in the mouse brain and the (13)C turnover curves of glutamate C4, glutamine C4, glutamate+glutamine C3, aspartate C2, lactate C3, alanine C3, γ-aminobutyric acid C2, C3 and C4 were obtained. A one-compartment model was used to fit (13)C turnover curves and resulted in values of metabolic fluxes including the tricarboxylic acid (TCA) cycle flux VTCA (1.05 ± 0.04 μmol/g per minute), the exchange flux between 2-oxoglutarate and glutamate Vx (0.48 ± 0.02 μmol/g per minute), the glutamate-glutamine exchange rate V(gln) (0.20 ± 0.02 μmol/g per minute), the pyruvate dilution factor K(dil) (0.82 ± 0.01), and the ratio for the lactate conversion rate and the alanine conversion rate V(Lac)/V(Ala) (10 ± 2). This study opens the prospect of studying transgenic mouse models of brain pathologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bradyrhizobium japonicum is a symbiotic nitrogen-fixing soil bacteria that induce root nodules formation in legume soybean (Glycine max.). Using 13C- and 31P-nuclear magnetic resonance (NMR) spectroscopy, we have analysed the metabolite profiles of cultivated B.japonicum cells and bacteroids isolated from soybean nodules. Our results revealed some quantitative and qualitative differences between the metabolite profiles of bacteroids and their vegetative state. This includes in bacteroids a huge accumulation of soluble carbohydrates such as trehalose, glutamate, myo-inositol and homospermidine as well as Pi, nucleotide pools and intermediates of the primary carbon metabolism. Using this novel approach, these data show that most of the compounds detected in bacteroids reflect the metabolic adaptation of rhizobia to the surrounding microenvironment with its host plant cells.