143 resultados para C-terminal Fragment


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The metalloprotease meprin has been implicated in tissue remodelling due to its capability to degrade extracellular matrix components. Here, we investigated the susceptibility of tenascin-C to cleavage by meprin beta and the functional properties of its proteolytic fragments. A set of monoclonal antibodies against chicken and human tenascin-C allowed the mapping of proteolytic fragments generated by meprin beta. In chicken tenascin-C, meprin beta processed all three major splicing variants by removal of 10 kDa N-terminal and 38 kDa C-terminal peptides, leaving a large central part of subunits intact. IN similar cleavage pattern was found for large human tenascin-C variant where two N-terminal peptides (10 or 15 kDa) and two C-terminal fragments (40 and 55 kDa) were removed from the intact subunit. N-terminal sequencing revealed the exact amino acid positions of cleavage sites. In both chicken and human tenascin-C N-terminal cleavages occurred just before and/or after the heptad repeats involved in subunit oligomerization. In the human protein, an additional cleavage site was identified in the alternative fibronectin type III repeat D. Whereas all these sites are known to be attacked by several other proteases, a unique cleavage by meprin beta was located to the 7th constant fibronectin type III repeat in both chicken and human tenascin-C, thereby removing the C-terminal domain involved in its anti-adhesive activity. In cell adhesion assays meprin beta-digested human tenascin-C was not able to interfere with fibronectin-mediated cell spreading, confirming cleavage in the anti-adhesive domain. Whereas the expression of meprin beta and tenascin-C does not overlap in normal colon tissue, inflamed lesions of the mucosa from patients with Crohn's disease exhibited many meprin beta-positive leukocytes in regions where tenascin-C was strongly induced. Our data indicate that, at least under pathological conditions, meprin beta might attack specific functional sites in tenascin-C that are important for its oligomerization and anti-adhesive activity. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) nonstructural protein 2 (NS2) is required for HCV polyprotein processing and particle assembly. It comprises an N-terminal membrane domain and a C-terminal, cytosolically oriented protease domain. Here, we demonstrate that the NS2 protease domain itself associates with cellular membranes. A single charged residue in the second α-helix of the NS2 protease domain is required for proper membrane association, NS2 protein stability, and efficient HCV polyprotein processing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nonstructural protein 4B (NS4B) plays an essential role in the formation of the hepatitis C virus (HCV) replication complex. It is an integral membrane protein that has been only poorly characterized to date. It is believed to comprise a cytosolic N-terminal part, a central part harboring four transmembrane passages, and a cytosolic C-terminal part. Here, we describe an amphipathic alpha-helix at the C terminus of NS4B (amino acid residues 229 to 253) that mediates membrane association and is involved in the formation of a functional HCV replication complex.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), represented by nonstructural protein 5B (NS5B), belongs to a class of integral membrane proteins termed tail-anchored proteins. Its membrane association is mediated by the C-terminal 21 amino acid residues, which are dispensable for RdRp activity in vitro. For this study, we investigated the role of this domain, termed the insertion sequence, in HCV RNA replication in cells. Based on a structural model and the amino acid conservation among different HCV isolates, we designed a panel of insertion sequence mutants and analyzed their membrane association and RNA replication. Subgenomic replicons with a duplication of an essential cis-acting replication element overlapping the sequence that encodes the C-terminal domain of NS5B were used to unequivocally distinguish RNA versus protein effects of these mutations. Our results demonstrate that the membrane association of the RdRp is essential for HCV RNA replication. Interestingly, certain amino acid substitutions within the insertion sequence abolished RNA replication without affecting membrane association, indicating that the C-terminal domain of NS5B has functions beyond serving as a membrane anchor and that it may be involved in critical intramembrane protein-protein interactions. These results have implications for the functional architecture of the HCV replication complex and provide new insights into the expanding spectrum of tail-anchored proteins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Apoptosis is defined as a programmed cell death process operating in multicellular organisms in order to maintain proper homeostasis of tissues. Caspases are among the best characterized proteases to execute apoptosis although lately many studies have associated them with non-apoptotic functions. In the laboratory an antiapoptotic pathway relying on caspase-3 activation and RasGAP has been described in vitro. RasGAP bears two conserved caspase-3 cleavage sites. Under low stress conditions, RasGAP is first cleaved by low caspase-3 activity generating an N terminal fragment (fragment N) that induces a potent anti-apoptotic response mediated by the Ras/PI3K/Akt pathway. High levels of active caspase-3, associated with increased stress conditions, induce further cleavage of fragment N abrogating this anti-apoptotic response. In the present work I studied the functionality of fragment N-mediated protection in physiological conditions as well as the mechanism by which fragment N induces an anti-apoptotic response, with a focus on survivin, an inhibitor of apoptosis. During my work in the laboratory I found that mice lacking caspase-3 or unable to cleave RasGAP (KI mice) are deficient in Akt activation and more sensitive to apoptosis than wild-type mice in response to stress. This higher sensitivity to stress led to augmented tissue damage, highlighting the importance of this pathway in protection against low stress. In parallel I focused on the study of survivin expression in the skin in response to UV-B light and I found that survivin is induced in the cytoplasm of keratinocytes in response to stress where it may fulfill a cyto-protective role. However fragment N had no effect on survivin expression. In addition, cytoplasmic survivin was increased in keratinocytes exposed to UV-B light, whether RasGAP is cleaved (WT mice) or not (KI mice), indicating that survivin is not involved in fragment N mediated protection. Altogether these data indicate that fragment N is pivotal for cell protection against pathophysiologic damage and can encourage the development of therapies aimed to strengthen the resistance of cells against aggressive treatments. Importantly, this finding contributes to the characterization of how caspase-3 can be activated without inducing cell death, although further studies need to be conducted in order to completely characterize this pro-survival molecular mechanism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nearly full-length Circumsporozoite protein (CSP) from Plasmodium falciparum, the C-terminal fragments from both P. falciparm and P. yoelii CSP and a fragment comprising 351 amino acids of P.vivax MSPI were expressed in the slime mold Dictyostelium discoideum. Discoidin-tag expression vectors allowed both high yields of these proteins and their purification by a nearly single-step procedure. We exploited the galactose binding activity of Discoidin Ia to separate the fusion proteins by affinity chromatography on Sepharose-4B columns. Inclusion of a thrombin recognition site allowed cleavage of the Discoidin-tag from the fusion protein. Partial secretion of the protein was obtained via an ER independent pathway, whereas routing the recombinant proteins to the ER resulted in glycosylation and retention. Yields of proteins ranged from 0.08 to 3 mg l(-1) depending on the protein sequence and the purification conditions. The recognition of purified MSPI by sera from P. vivax malaria patients was used to confirm the native conformation of the protein expressed in Dictyostelium. The simple purification procedure described here, based on Sepharose-4B, should facilitate the expression and the large-scale purification of various Plasmodium polypeptides.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mammary tumors of a newly isolated strain of Chinese wild mouse (JYG mouse) harbor exogenous mouse mammary tumor virus (MMTV). The complete nucleotide sequence of exogenous JYG-MMTV was determined on the proviral 5' long terminal repeat (LTR)(partial)-gag-pol-env-3' LTR (partial) fragment cloned into a plasmid vector and the cDNA sequence from JYG-MMTV producing cells. Similarly to the other MMTV species the LTR of JYG-MMTV contains an open reading frame (ORF). The amino acid sequence of the JYG-MMTV ORF resembles that of SW-MMTV (92% identity) and endogenous Mtv-7 (93% identity) especially at the C-terminal region. Thus, a functional similarity in T-cell receptor V beta recognition as a superantigen is implicated among these MMTV species. Analysis of the viral gag nucleotide sequence revealed that this gene is not disrupted by the bacterial insertion sequence IS1 or IS2, which have been reported to be present in the majority of the plasmids containing the gag region. Comparison of amino acid sequences of JYG-MMTV with those of BR6-MMTV showed that over 96% of the amino acids of gag, pol, protease and env products are identical. These results suggest the intact nature of the nucleotide sequence of the near full-length MMTV genome cloned in the plasmid.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) replicates its genome in a membrane-associated replication complex, composed of viral proteins, replicating RNA and altered cellular membranes. We describe here HCV replicons that allow the direct visualization of functional HCV replication complexes. Viable replicons selected from a library of Tn7-mediated random insertions in the coding sequence of nonstructural protein 5A (NS5A) allowed the identification of two sites near the NS5A C terminus that tolerated insertion of heterologous sequences. Replicons encoding green fluorescent protein (GFP) at these locations were only moderately impaired for HCV RNA replication. Expression of the NS5A-GFP fusion protein could be demonstrated by immunoblot, indicating that the GFP was retained during RNA replication and did not interfere with HCV polyprotein processing. More importantly, expression levels were robust enough to allow direct visualization of the fusion protein by fluorescence microscopy. NS5A-GFP appeared as brightly fluorescing dot-like structures in the cytoplasm. By confocal laser scanning microscopy, NS5A-GFP colocalized with other HCV nonstructural proteins and nascent viral RNA, indicating that the dot-like structures, identified as membranous webs by electron microscopy, represent functional HCV replication complexes. These findings reveal an unexpected flexibility of the C-terminal domain of NS5A and provide tools for studying the formation and turnover of HCV replication complexes in living cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mechanisms underlying preferential atrophy of the striatum in Huntington's disease (HD) are unknown. One hypothesis is that a set of gene products preferentially expressed in the striatum could determine the particular vulnerability of this brain region to mutant huntingtin (mHtt). Here, we studied the striatal protein µ-crystallin (Crym). Crym is the NADPH-dependent p38 cytosolic T3-binding protein (p38CTBP), a key regulator of thyroid hormone (TH) T3 (3,5,3'-triiodo-l-thyronine) transportation. It has been also recently identified as the enzyme that reduces the sulfur-containing cyclic ketimines, which are potential neurotransmitters. Here, we confirm the preferential expression of the Crym protein in the rodent and macaque striatum. Crym expression was found to be higher in the macaque caudate than in the putamen. Expression of Crym was reduced in the BACHD and Knock-in 140CAG mouse models of HD before onset of striatal atrophy. We show that overexpression of Crym in striatal medium-size spiny neurons using a lentiviral-based strategy in mice is neuroprotective against the neurotoxicity of an N-terminal fragment of mHtt in vivo. Thus, reduction of Crym expression in HD could render striatal neurons more susceptible to mHtt suggesting that Crym may be a key determinant of the vulnerability of the striatum. In addition our work points to Crym as a potential molecular link between striatal degeneration and the THs deregulation reported in HD patients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In Arabidopsis, interplay between nuclear auxin perception and trans-cellular polar auxin transport determines the transcriptional auxin response. In brevis radix (brx) mutants, this response is impaired, probably indirectly because of disturbed crosstalk between the auxin and brassinosteroid pathways. Here we provide evidence that BRX protein is plasma membrane-associated, but translocates to the nucleus upon auxin treatment to modulate cellular growth, possibly in conjunction with NGATHA class B3 domain-type transcription factors. Application of the polar auxin transport inhibitor naphthalene phthalamic acid (NPA) resulted in increased BRX abundance at the plasma membrane. Thus, nuclear translocation of BRX could depend on cellular auxin concentration or on auxin flux. Supporting this idea, NPA treatment of wild-type roots phenocopied the brx root meristem phenotype. Moreover, BRX is constitutively turned over by the proteasome pathway in the nucleus. However, a stabilized C-terminal BRX fragment significantly rescued the brx root growth phenotype and triggered a hypocotyl gain-of-function phenotype, similar to strong overexpressors of full length BRX. Therefore, although BRX activity is required in the nucleus, excess activity interferes with normal development. Finally, similar to the PIN-FORMED 1 (PIN1) auxin efflux carrier, BRX is polarly localized in vascular cells and subject to endocytic recycling. Expression of BRX under control of the PIN1 promoter fully rescued the brx short root phenotype, suggesting that the two genes act in the same tissues. Collectively, our results suggest that BRX might provide a contextual readout to synchronize cellular growth with the auxin concentration gradient across the root tip.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The N-terminal domain of the circumsporozoite protein (CSP) has been largely neglected in the search for a malaria vaccine in spite of being a target of inhibitory antibodies and protective T cell responses in mice. Thus, in order to develop this region as a vaccine candidate to be eventually associated with other candidates and, in particular, with the very advanced C-terminal counterpart, synthetic constructs representing N- and C-terminal regions of Plasmodium falciparum and Plasmodium berghei CSP were administered as single or combined formulations in mice. We show that the antisera generated against the combinations inhibit sporozoite invasion of hepatocytes in vitro better than antisera against single peptides. Furthermore, two different P. falciparum CSP N-terminal constructs (PfCS22-110 and PfCS65-110) were recognized by serum samples from people living in malaria-endemic regions. Importantly, recognition of the short N-terminal peptide (PfCS65-110) by sera from children living in a malaria-endemic region was associated with protection from disease. Taken together, these results underline the potential of using such fragments as malaria vaccine candidates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) nonstructural protein 5B (NS5B), the viral RNA-dependent RNA polymerase (RdRp), is a tail-anchored protein with a highly conserved C-terminal transmembrane domain (TMD) that is required for the assembly of a functional replication complex. Here, we report that the TMD of the HCV RdRp can be functionally replaced by a newly identified analogous membrane anchor of the GB virus B (GBV-B) NS5B RdRp. Replicons with a chimeric RdRp consisting of the HCV catalytic domain and the GBV-B membrane anchor replicated with reduced efficiency. Compensatory amino acid changes at defined positions within the TMD improved the replication efficiency of these chimeras. These observations highlight a conserved structural motif within the TMD of the HCV NS5B RdRp that is required for RNA replication.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Résume Les caspases sont un groupe de protéases à cystéine qui s?activent lors de l'apoptose. Leur activation induit le clivage de nombreuses cibles intracellulaires, conduisant à l'activation de voies pro-apoptotiques et finalement au démantèlement des cellules. Cependant, des caspases ont été décrites dans de nombreux autres processus indépendants de l'apoptose, notamment dans la physiologie des cellules hématopoïétiques, des cellules musculaires, des cellules de la peau et des neurones. Comment est-ce que les cellules réconcilient-elles ces deux fonctions distinctes? Une partie de la réponse réside dans la nature des substrats qu'elles clivent. Certains substrats, une fois clivées, deviennent anti-apoptotiques. RasGAP est une cible des caspases et contient deux sites spécifiques de clivage par les caspases. Lorsque le niveau d?activité des caspases est faible le clivage de RasGAP produit un fragment N-terminal qui active un signal antiapoptotique, relayé par la voie de Ras/PI3K/Akt. Lorsque le niveau d?activité des caspases est plus élevé le fragment RasGAP N-terminal est à nouveau clivé, perdant de ce fait ses propriétés anti-apoptotiques. Dans cette étude, nous avons mis en évidence que l'activation de la voie Ras/PI3K/Akt induite par le fragment RasGAP N-terminal dépend de RasGAP lui-même. Par ailleurs, dans le but d?étudier l?importance du clivage de RasGAP dans un contexte physiologique, nous avons développé un modèle animal exprimant une gêne mutée de RasGAP de sorte que la protéine est devenu insensible a l?action de caspases. Les données préliminaires obtenues montrent que le clivage de RasGAP n'est pas indispensable pour le développement et l?homéostasie chez la souris. Finalement, nous avons développé une souris transgénique surexprimant le fragment de RasGAP N-terminal dans les cellules ß du pancréas. Les animaux obtenus ne montrent pas de symptômes dans les conditions basales bien qu?ils soient plus résistants au diabète induit expérimentalement. Ces résultats montrent que la surexpression du fragment N-terminal de RasGAP protége efficacement les cellules ß du pancréas de l?apoptose induite par le stress sans pourtant affecter d?autres paramètres physiologiques des Ilot de Langerhans.<br/><br/>Caspases are a series of proteases that are activated during apoptosis. Their activation causes the cleavage of numerous intracellular targets, which leads to cell dismantling and activation of pro-apoptotic pathways. Caspases have been found to be involved in the physiology of numerous cell types including haematopoietic cells, muscle cells, skin cells and neurons. How cells conciliate these two opposite functions? Part of the answer lies in the nature of the substrates they cleave. Some substrates become anti-apoptotic once cleaved by caspases. RasGAP is a caspase substrate that possesses two conserved caspase-cleavage sites. At low caspase activity, RasGAP is first cleaved and the generated N-terminal fragment activates a potent anti-apoptotic signal, mediated by the Ras/PI3K/Akt pathway. At higher caspase activity, the N-terminal fragment is further cleaved thereby losing its anti-apoptotic properties. In the present study we show that the activation of the Ras/PI3K/Akt pathway mediated by RasGAP N-terminal fragment is dependent on RasGAP itself. Moreover, to study the role of RasGAP cleavage in a physiological model, we have developed a knock-in mouse model expressing a RasGAP mutant that is not cleavable by caspases. Preliminary data shows that RasGAP cleavage is not required for normal development and homeostasis in mice. Finally, we have developed a transgenic mouse model overexpressing RasGAP N-terminal fragment in the ß-cell of the pancreas. In basal conditions, these mice show no difference with their wt counterparts. However, they are protected against experimentally induced diabetes. These results indicate that fragment N can protect ? cells from stress-induced apoptosis without affecting other physiological parameters of the Islets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fibroblast growth factor receptors (FGFRs) are involved in proliferative and differentiation physiological responses. Deregulation of FGFR-mediated signaling involving the Ras/PI3K/Akt and the Ras/Raf/ERK MAPK pathways is causally involved in the development of several cancers. The caspase-3/p120 RasGAP module is a stress sensor switch. Under mild stress conditions, RasGAP is cleaved by caspase-3 at position 455. The resulting N-terminal fragment, called fragment N, stimulates anti-death signaling. When caspase-3 activity further increases, fragment N is cleaved at position 157. This generates a fragment, called N2, that no longer protects cells. Here, we investigated in Xenopus oocytes the impact of RasGAP and its fragments on FGF1-mediated signaling during G2/M cell cycle transition. RasGAP used its N-terminal Src homology 2 domain to bind FGFR once stimulated by FGF1, and this was necessary for the recruitment of Akt to the FGFR complex. Fragment N, which did not associate with the FGFR complex, favored FGF1-induced ERK stimulation, leading to accelerated G2/M transition. In contrast, fragment N2 bound the FGFR, and this inhibited mTORC2-dependent Akt Ser-473 phosphorylation and ERK2 phosphorylation but not phosphorylation of Akt on Thr-308. This also blocked cell cycle progression. Inhibition of Akt Ser-473 phosphorylation and entry into G2/M was relieved by PHLPP phosphatase inhibition. Hence, full-length RasGAP favors Akt activity by shielding it from deactivating phosphatases. This shielding was abrogated by fragment N2. These results highlight the role played by RasGAP in FGFR signaling and how graded stress intensities, by generating different RasGAP fragments, can positively or negatively impact this signaling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The nuclear factor κB (NF-κB) transcription factor is a master regulator of inflammation. Short-term NF-κB activation is generally beneficial. However, sustained NF-κB might be detrimental, directly causing apoptosis of cells or leading to a persistent damaging inflammatory response. NF-κB activity in stressed cells needs therefore to be controlled for homeostasis maintenance. In mildly stressed cells, caspase-3 cleaves p120 RasGAP, also known as RASA1, into an N-terminal fragment, which we call fragment N. We show here that this fragment is a potent NF-κB inhibitor. Fragment N decreases the transcriptional activity of NF-κB by promoting its export from the nucleus. Cells unable to generate fragment N displayed increased NF-κB activation upon stress. Knock-in mice expressing an uncleavable p120 RasGAP mutant showed exaggerated NF-κB activation when their epidermis was treated with anthralin, a drug used for the treatment of psoriasis. Our study provides biochemical and genetic evidence of the importance of the caspase-3-p120-RasGAP stress-sensing module in the control of stress-induced NF-κB activation.