64 resultados para Burst oxidativo
Resumo:
Micelles formed from amphiphilic block copolymers have been explored in recent years as carriers for hydrophobic drugs. In an aqueous environment, the hydrophobic blocks form the core of the micelle, which can host lipophilic drugs, while the hydrophilic blocks form the corona or outer shell and stabilize the interface between the hydrophobic core and the external medium. In the present work, mesophase behavior and drug encapsulation were explored in the AB block copolymeric amphiphile composed of poly(ethylene glycol) (PEG) as a hydrophile and poly(propylene sulfide) PPS as a hydrophobe, using the immunosuppressive drug cyclosporin A (CsA) as an example of a highly hydrophobic drug. Block copolymers with a degree of polymerization of 44 on the PEG and of 10, 20 and 40 on the PPS respectively (abbreviated as PEG44-b-PPS10, PEG44-b-PPS20, PEG44-b-PPS40) were synthesized and characterized. Drug-loaded polymeric micelles were obtained by the cosolvent displacement method as well as the remarkably simple method of dispersing the warm polymer melt, with drug dissolved therein, in warm water. Effective drug solubility up to 2 mg/mL in aqueous media was facilitated by the PEG- b-PPS micelles, with loading levels up to 19% w/w being achieved. Release was burst-free and sustained over periods of 9-12 days. These micelles demonstrate interesting solubilization characteristics, due to the low glass transition temperature, highly hydrophobic nature, and good solvent properties of the PPS block
Resumo:
Susceptibility of BALB/c mice to infection with Leishmania major is associated with a T helper type 2 (Th2) response. Since interleukin-4 (IL-4) is critically required early for Th2 cell development, the kinetics of IL-4 mRNA expression was compared in susceptible and resistant mice during the first days of infection. In contrast to resistant mice, susceptible mice exhibited a peak of IL-4 mRNA in their spleens 90 min after i.v. injection of parasites and in lymph nodes 16 h after s.c. injection. IL-12 and interferon-gamma (IFN-gamma) down-regulated this early peak of IL-4 mRNA; the effect of IL-12 was IFN-gamma dependent. Treatment of resistant C57BL/6 mice with anti-IFN-gamma allowed the expression of this early IL-4 response to L. major. The increased IL-4 mRNA expression occurred in V beta 8, 7, 2- CD4+ cells in BALB/c mice and NK1.1- CD4+ cells in anti-IFN-gamma treated C57BL/6 mice. These results show that the NK1.1+ CD4+ cells, responsible for the rapid burst of IL-4 production after i.v. injection of anti-CD3, do not contribute to the early IL-4 response to L. major.
Resumo:
Visual analysis of electroencephalography (EEG) background and reactivity during therapeutic hypothermia provides important outcome information, but is time-consuming and not always consistent between reviewers. Automated EEG analysis may help quantify the brain damage. Forty-six comatose patients in therapeutic hypothermia, after cardiac arrest, were included in the study. EEG background was quantified with burst-suppression ratio (BSR) and approximate entropy, both used to monitor anesthesia. Reactivity was detected through change in the power spectrum of signal before and after stimulation. Automatic results obtained almost perfect agreement (discontinuity) to substantial agreement (background reactivity) with a visual score from EEG-certified neurologists. Burst-suppression ratio was more suited to distinguish continuous EEG background from burst-suppression than approximate entropy in this specific population. Automatic EEG background and reactivity measures were significantly related to good and poor outcome. We conclude that quantitative EEG measurements can provide promising information regarding current state of the patient and clinical outcome, but further work is needed before routine application in a clinical setting.
Resumo:
Objectives: Recent population genetic studies suggest that the Staphylococcal Chromosome Cassettes mec (SCCmec) was acquired at a global scale much more frequently than previously thought. We hypothesized that such acquisitions can also be observed at a local level. In the present study, we aimed at investigating the diversity of SCCmec in a local MRSA population, where the dissemination of four MRSA clones has been observed (JCM 2007, 45: 3729). Methods: All the MRSA isolates (one per patient) recovered in the Vaud canton of Switzerland from January 2005 to December 2008 were analyzed in this study. We used the Double Locus Sequence Typing (DLST) method, based on clfB and spa loci, and the e-BURST algorithm to group the types with one allele in common (i.e. clone). To increase the discriminatory power of the DLST method, a third polymorphic marker (clfA) was further analyzed on a sub-sample of isolates. The SCCmec type of each isolate was determined with the first two PCRs of the Kondo scheme. Results: DLST analysis indicated that 1884/2036 isolates (92.5%) belong to the four predominant clones. A majority of isolates in each clone harboured an identical SCCmec type: 61/64 (95%) isolates to DLST clone 1−1 SCCmec IV, 1282/1323 (97%) to clone 2−2 SCCmec II, 237/288 (82%) to clone 3−3 SCCmec IV, and 192/209 (92%) to clone 4−4 SCCmec I. Unexpectedly, different SCCmec types were present in a single predominant DLST clone: SCCmec V plus one unusual type in 3 isolates of clone 1−1; SCCmec I, IV, V, VI plus two unusual types in 41 isolates of clone 2−2; SCCmec I, II, VI plus three unusual types in 51 isolates of clone 3−3; and SCCmec II, IV, V plus one unusual type in 17 isolates of clone 4−4. Interestingly, adding a third locus generally did not change the classification of incongruent SCCmec types, suggesting that these SCCmec elements have been acquired locally during the dissemination of the clones. Conclusion: Although the SCCmec diversity within clones was relatively low at a local level, a significant proportion of isolates with different SCCmec have been identified in the four major clones. This suggests that the local acquisition of SCCmec elements is not a rare event and illustrates the great capacity of S. aureus to quickly adapt to its environment by acquiring new genetic elements.
Resumo:
An enormous burst of interest in the public health burden from chronic disease in Africa has emerged as a consequence of efforts to estimate global population health. Detailed estimates are now published for Africa as a whole and each country on the continent. These data have formed the basis for warnings about sharp increases in cardiovascular disease (CVD) in the coming decades. In this essay we briefly examine the trajectory of social development on the continent and its consequences for the epidemiology of CVD and potential control strategies. Since full vital registration has only been implemented in segments of South Africa and the island nations of Seychelles and Mauritius - formally part of WHO-AFRO - mortality data are extremely limited. Numerous sample surveys have been conducted but they often lack standardization or objective measures of health status. Trend data are even less informative. However, using the best quality data available, age-standardized trends in CVD are downward, and in the case of stroke, sharply so. While acknowledging that the extremely limited available data cannot be used as the basis for inference to the continent, we raise the concern that general estimates based on imputation to fill in the missing mortality tables may be even more misleading. No immediate remedies to this problem can be identified, however bilateral collaborative efforts to strength local educational institutions and governmental agencies rank as the highest priority for near term development.
Resumo:
BACKGROUND: The aim of our study was to assess the feasibility of minimally invasive digestive anastomosis using a modular flexible magnetic anastomotic device made up of a set of two flexible chains of magnetic elements. The assembly possesses a non-deployed linear configuration which allows it to be introduced through a dedicated small-sized applicator into the bowel where it takes the deployed form. A centering suture allows the mating between the two parts to be controlled in order to include the viscerotomy between the two magnetic rings and the connected viscera. METHODS AND PROCEDURES: Eight pigs were involved in a 2-week survival experimental study. In five colorectal anastomoses, the proximal device was inserted by a percutaneous endoscopic technique, and the colon was divided below the magnet. The distal magnet was delivered transanally to connect with the proximal magnet. In three jejunojejunostomies, the first magnetic chain was injected in its linear configuration through a small enterotomy. Once delivered, the device self-assembled into a ring shape. A second magnet was injected more distally through the same port. The centering sutures were tied together extracorporeally and, using a knot pusher, magnets were connected. Ex vivo strain testing to determine the compression force delivered by the magnetic device, burst pressure of the anastomosis, and histology were performed. RESULTS: Mean operative time including endoscopy was 69.2 ± 21.9 min, and average time to full patency was 5 days for colorectal anastomosis. Operative times for jejunojejunostomies were 125, 80, and 35 min, respectively. The postoperative period was uneventful. Burst pressure of all anastomoses was ≥ 110 mmHg. Mean strain force to detach the devices was 6.1 ± 0.98 and 12.88 ± 1.34 N in colorectal and jejunojejunal connections, respectively. Pathology showed a mild-to-moderate inflammation score. CONCLUSIONS: The modular magnetic system showed enormous potential to create minimally invasive digestive anastomoses, and may represent an alternative to stapled anastomoses, being easy to deliver, effective, and low cost.
Resumo:
Gene expression often cycles between active and inactive states in eukaryotes, yielding variable or noisy gene expression in the short-term, while slow epigenetic changes may lead to silencing or variegated expression. Understanding how cells control these effects will be of paramount importance to construct biological systems with predictable behaviours. Here we find that a human matrix attachment region (MAR) genetic element controls the stability and heritability of gene expression in cell populations. Mathematical modeling indicated that the MAR controls the probability of long-term transitions between active and inactive expression, thus reducing silencing effects and increasing the reactivation of silent genes. Single-cell short-terms assays revealed persistent expression and reduced expression noise in MAR-driven genes, while stochastic burst of expression occurred without this genetic element. The MAR thus confers a more deterministic behavior to an otherwise stochastic process, providing a means towards more reliable expression of engineered genetic systems.
Resumo:
Afin de pouvoir se défendre contre les insectes nuisibles, les plantes ont développé plusieurs stratégies leur permettant de maximiser leurs chances de survie et de reproduction. Parmi elles, les plantes sont souvent pourvues de barrières physiques telles que les poils urticants, les épines et la cuticule. En plus, les plantes sont capables de produire des protéines anti-digestives et des métabolites secondaires insecticides tels que la nicotine, les tannins ou les glucosinolates (GS). La mise en place de ces barrières physiques et chimiques comporte un coût énergétique au détriment de la croissance et de la reproduction. Par conséquent, en absence d'insectes, la plante investit la majeure partie de son énergie dans le développement et la croissance. A l'inverse, une blessure causée par un insecte provoquera une croissance ralentie, une augmentation de la densité de poils urticants ainsi que la synthèse de défenses chimiques. Au niveau moléculaire, cette défense inductible est régulée par l'hormone végétale acide jamsonique (AJ). En réponse à l'attaque d'un insecte, la plante produit cette hormone en grande quantité, ce qui se traduira par une forte expression de gènes de défense. Pendant ma thèse, j'ai essayé de découvrir quels étaient les facteurs de transcription (FT) responsables de l'expression des gènes de défense dans Arabidopsis thaliana. J'ai ainsi pu démontrer que des plantes mutées dans les FTs comme MYC2, MYC3, MYC4, ZAT10, ZAT12, AZF2, WRKY18, WRKY40, WRKY6, ANAC019, ANAC55, ERF13 et RRTF1 deviennent plus sensibles aux insects de l'espèce Spodoptera littoralis. Par la suite, j'ai également pu montrer que MYC2, MYC3 et MYC4 sont probablement la cible principale de la voie de signalisation du AJ et qu'ils sont nécessaires pour l'expression de la majorité des gènes de défense dont la plupart sont essentiels à la biosynthèse des GS. Une plante mutée simultanément dans ces trois protéines est par conséquent incapable de synthétiser des GS et devient hypersensible aux insectes. J'ai également pu démontrer que les GS sont uniquement efficaces contre les insectes généralistes tels S. littoralis et Heliothis virescens alors que les insectes spécialisés sur les Brassicaceae comme Pieris brassicae et Plutella xylostella se sont adaptés en développant des mécanismes de détoxification. - In response to herbivore insects, plants have evolved several defence strategies to maximize their survival and reproduction. For example, plants are often endowed with trichomes, spines and a thick cuticule. In addition, plants can produce anti-digestive proteins and toxic secondary metabolites like nicotine, tannins and glucosinolates (GS). These physical and chemical barriers have an energetic cost to the detriment of growth and reproduction. As a consequence, in absence of insects, plants allocate their energy to development and growth. On the contrary, an attack by herbivore insects will affect plant growth, increase trichome density and induce the production of anti-digestive proteins and secondary metabolites. At the molecular level, this inducible defence is regulated by the phytohormone jasmonic acid (JA). Thus, an attack by herbivores will be followed by a burst of JA that will induce the expression of defence genes. The aim of my thesis was to characterize which transcription factors (TF) regulate the expression of these defence genes in Arabidopsis thaliana. I could show that plants mutated in various TFs like MYC2, MYC3, MYC4, ZAT10, ZAT12, AZF2, WRKY18, WRKY40, WRKY6, ANAC019, ANAC55, ERF 13 and RRTFl were more susceptible to the herbivore Spodoptera littoralis. Furthermore, I could demonstrate that MYC2, MYC3 and MYC4 are probably the main target of the JA-signalling pathway and that they are necessary for the insect-mediated induction of most defence genes including genes involved in the biosynthesis of GS. A triple mutant myc2myc3myc4 is depleted of GS and consequently hypersensitive to insects. Moreover, I showed that GS are only efficient against generalist herbivores like S. littoralis and Heliothis virescens whereas specialized insects like Pieris brassicae and Plutella xylostella have evolved detoxification mechanisms against GS.
Resumo:
INTRODUCTION: Continuous EEG (cEEG) is increasingly used to monitor brain function in neuro-ICU patients. However, its value in patients with coma after cardiac arrest (CA), particularly in the setting of therapeutic hypothermia (TH), is only beginning to be elucidated. The aim of this study was to examine whether cEEG performed during TH may predict outcome. METHODS: From April 2009 to April 2010, we prospectively studied 34 consecutive comatose patients treated with TH after CA who were monitored with cEEG, initiated during hypothermia and maintained after rewarming. EEG background reactivity to painful stimulation was tested. We analyzed the association between cEEG findings and neurologic outcome, assessed at 2 months with the Glasgow-Pittsburgh Cerebral Performance Categories (CPC). RESULTS: Continuous EEG recording was started 12 ± 6 hours after CA and lasted 30 ± 11 hours. Nonreactive cEEG background (12 of 15 (75%) among nonsurvivors versus none of 19 (0) survivors; P < 0.001) and prolonged discontinuous "burst-suppression" activity (11 of 15 (73%) versus none of 19; P < 0.001) were significantly associated with mortality. EEG seizures with absent background reactivity also differed significantly (seven of 15 (47%) versus none of 12 (0); P = 0.001). In patients with nonreactive background or seizures/epileptiform discharges on cEEG, no improvement was seen after TH. Nonreactive cEEG background during TH had a positive predictive value of 100% (95% confidence interval (CI), 74 to 100%) and a false-positive rate of 0 (95% CI, 0 to 18%) for mortality. All survivors had cEEG background reactivity, and the majority of them (14 (74%) of 19) had a favorable outcome (CPC 1 or 2). CONCLUSIONS: Continuous EEG monitoring showing a nonreactive or discontinuous background during TH is strongly associated with unfavorable outcome in patients with coma after CA. These data warrant larger studies to confirm the value of continuous EEG monitoring in predicting prognosis after CA and TH.
Resumo:
The T-type Ca(2+) channels encoded by the Ca(V)3 genes are well established electrogenic drivers for burst discharge. Here, using Ca(V)3.3(-/-) mice we found that Ca(V)3.3 channels trigger synaptic plasticity in reticular thalamic neurons. Burst discharge via Ca(V)3.3 channels induced long-term potentiation at thalamoreticular inputs when coactivated with GluN2B-containing NMDA receptors, which are the dominant subtype at these synapses. Notably, oscillatory burst discharge of reticular neurons is typical for sleep-related rhythms, suggesting that sleep contributes to strengthening intrathalamic circuits.
Resumo:
Although sleep is defined as a behavioral state, at the cortical level sleep has local and use-dependent features suggesting that it is a property of neuronal assemblies requiring sleep in function of the activation experienced during prior wakefulness. Here we show that mature cortical cultured neurons display a default state characterized by synchronized burst-pause firing activity reminiscent of sleep. This default sleep-like state can be changed to transient tonic firing reminiscent of wakefulness when cultures are stimulated with a mixture of waking neurotransmitters and spontaneously returns to sleep-like state. In addition to electrophysiological similarities, the transcriptome of stimulated cultures strikingly resembles the cortical transcriptome of sleep-deprived mice, and plastic changes as reflected by AMPA receptors phosphorylation are also similar. We used our in vitro model and sleep-deprived animals to map the metabolic pathways activated by waking. Only a few metabolic pathways were identified, including glycolysis, aminoacid, and lipids. Unexpectedly large increases in lysolipids were found both in vivo after sleep deprivation and in vitro after stimulation, strongly suggesting that sleep might play a major role in reestablishing the neuronal membrane homeostasis. With our in vitro model, the cellular and molecular consequences of sleep and wakefulness can now be investigated in a dish.
Resumo:
Introduction: Continuous EEG (cEEG) is increasingly used to monitor brain function in neuro-ICU patients. However, its value in patients with coma after cardiac arrest (CA), particularly in the setting of therapeutic hypothermia (TH), is only beginning to be elucidated. The aim of this study was to examine whether cEEG performed during TH may predict outcome. Methods: From April 2009 to April 2010, we prospectively studied 34 consecutive comatose patients treated with TH after CA who were monitored with cEEG, initiated during hypothermia and maintained after rewarming. EEG background reactivity to painful stimulation was tested. We analyzed the association between cEEG findings and neurologic outcome, assessed at 2 months with the Glasgow-Pittsburgh Cerebral Performance Categories (CPC). Results: Continuous EEG recording was started 12 ± 6 hours after CA and lasted 30 ± 11 hours. Nonreactive cEEG background (12 of 15 (75%) among nonsurvivors versus none of 19 (0) survivors; P < 0.001) and prolonged discontinuous "burst-suppression" activity (11 of 15 (73%) versus none of 19; P < 0.001) were significantly associated with mortality. EEG seizures with absent background reactivity also differed significantly (seven of 15 (47%) versus none of 12 (0); P = 0.001). In patients with nonreactive background or seizures/epileptiform discharges on cEEG, no improvement was seen after TH. Nonreactive cEEG background during TH had a positive predictive value of 100% (95% confidence interval (CI), 74 to 100%) and a false-positive rate of 0 (95% CI, 0 to 18%) for mortality. All survivors had cEEG background reactivity, and the majority of them (14 (74%) of 19) had a favorable outcome (CPC 1 or 2). Conclusions: Continuous EEG monitoring showing a nonreactive or discontinuous background during TH is strongly associated with unfavorable outcome in patients with coma after CA. These data warrant larger studies to confirm the value of continuous EEG monitoring in predicting prognosis after CA and TH.
Resumo:
Previous results have documented a burst of IL-4 mRNA that peaks in draining lymph nodes of susceptible BALB/c mice 16 h after infection with Leishmania major. The importance of this early IL-4 response in subsequent Th2 cell maturation is supported by observations showing that 1) neutralization of IL-4 at the initiation of infection or 2) administration of IL-12, which results in an inhibition of the 16 h IL-4 mRNA burst, inhibits Th2 cell development. However, both treatments are effective in hampering Th2 cell development only if given at a time when IL-4 has been produced for <48 h. At this time after infection, lymph node CD4+ T cells from BALB/c mice no longer respond to IL-12. This IL-12 unresponsiveness is prevented in mice treated with anti-IL-4 Abs at the initiation of infection. Finally, the inhibition of Th2 development in BALB/c mice treated with anti-IL-4 Abs at the onset of infection results from maintenance of IL-12 responsiveness, since it requires IL-12. Together, these results reveal a narrow window of time, between 16 h and <48 h after infection, during which IL-4 produced rapidly in BALB/c mice renders T cells unresponsive to IL-12, allowing their differentiation toward the Th2 phenotype.
Resumo:
The first experimental evidence for the development of polarized CD4+ Th1 and Th2 responses in vivo has been obtained using the murine model of infection with Leishmania major, an intracellular parasite of macrophages in their vertebrate host. Genetically determined resistance and susceptibility to infection with this parasite have been clearly demonstrated to result from the development of polarized Th1 and Th2 responses, respectively. Using this model system, the dominant role of cytokines in the induction of polarized CD4+ responses has been validated in vivo. The requisite role of IL-4 in mediating both Th2 differentiation and susceptibility to infection in BALB/c mice has directed interest towards the search for evidence of IL-4 production early after infection and identification of its cellular source. We have been able to demonstrate a burst of IL-4 production in susceptible BALB/c mice within the first day of infection with L. major and could establish that this rapidly produced IL-4 instructed Th2 lineage commitment of subsequently activated CD4+ T cells and stabilized this commitment by downregulating IL-12 Rbeta2 chain expression, resulting in susceptibility to infection. Strikingly, this early IL-4 response to infection resulted from the cognate recognition of a single epitope in a distinctive antigen, LACK, from this complex microorganism by a restricted population of CD4+ T cells that express Vbeta4-Valpha8 T cell receptors.
Resumo:
Chemokines are small chemotactic molecules widely expressed throughout the central nervous system. A number of papers, during the past few years, have suggested that they have physiological functions in addition to their roles in neuroinflammatory diseases. In this context, the best evidence concerns the CXC-chemokine stromal cell-derived factor (SDF-1alpha or CXCL12) and its receptor CXCR4, whose signalling cascade is also implicated in the glutamate release process from astrocytes. Recently, astrocytic synaptic like microvesicles (SLMVs) that express vesicular glutamate transporters (VGLUTs) and are able to release glutamate by Ca(2+)-dependent regulated exocytosis, have been described both in tissue and in cultured astrocytes. Here, in order to elucidate whether SDF-1alpha/CXCR4 system can participate to the brain fast communication systems, we investigated whether the activation of CXCR4 receptor triggers glutamate exocytosis in astrocytes. By using total internal reflection (TIRF) microscopy and the membrane-fluorescent styryl dye FM4-64, we adapted an imaging methodology recently developed to measure exocytosis and recycling in synaptic terminals, and monitored the CXCR4-mediated exocytosis of SLMVs in astrocytes. We analyzed the co-localization of VGLUT with the FM dye at single-vesicle level, and observed the kinetics of the FM dye release during single fusion events. We found that the activation of CXCR4 receptors triggered a burst of exocytosis on a millisecond time scale that involved the release of Ca(2+) from internal stores. These results support the idea that astrocytes can respond to external stimuli and communicate with the neighboring cells via fast release of glutamate.