53 resultados para Billing Platform
Resumo:
The aim of this study was to evaluate the forensic protocol recently developed by Qiagen for the QIAsymphony automated DNA extraction platform. Samples containing low amounts of DNA were specifically considered, since they represent the majority of samples processed in our laboratory. The analysis of simulated blood and saliva traces showed that the highest DNA yields were obtained with the maximal elution volume available for the forensic protocol, that is 200 ml. Resulting DNA extracts were too diluted for successful DNA profiling and required a concentration. This additional step is time consuming and potentially increases inversion and contamination risks. The 200 ml DNA extracts were concentrated to 25 ml, and the DNA recovery estimated with real-time PCR as well as with the percentage of SGM Plus alleles detected. Results using our manual protocol, based on the QIAamp DNA mini kit, and the automated protocol were comparable. Further tests will be conducted to determine more precisely DNA recovery, contamination risk and PCR inhibitors removal, once a definitive procedure, allowing the concentration of DNA extracts from low yield samples, will be available for the QIAsymphony.
Resumo:
The Late Triassic and Jurassic platform and the oceanic complexes in Evvoia, Greece, share a complementary plate-tectonic evolution. Shallow marine carbonate deposition responded to changing rates of subsidence and uplift, whilst the adjacent ocean underwent spreading, and then convergence, collision and finally obduction over the platform complex. Late Triassic ocean spreading correlated with platform subsidence and the formation of a long-persisting peritidal passive-margin platform. Incipient drowning occurred from the Sinemurian to the late Middle Jurassic. This subsidence correlated with intra-oceanic subduction and plate convergence that led to supra-subduction calc-alkaline magmatism and the formation of a primitive volcanic arc. During the Middle Jurassic, plate collision caused arc uplift above the carbonate compensation depth (CCD) in the oceanic realm, and related thrust-faulting, on the platform, led to sub-aerial exposures. Patch-reefs developed there during the Late Oxfordian to Kimmeridgian. Advanced oceanic nappe-loading caused platform drowning below the CCD during the Tithonian, which is documented by intercalations of reefal turbidites with non-carbonate radiolarites. Radiolarites and bypass-turbidites, consisting of siliciclastic greywacke, terminate the platform succession beneath the emplaced oceanic nappe during late Tithonian to Valanginian time.
Resumo:
A high-resolution carbon and oxygen isotope analysis of Late Oxfordian-Early Kimmeridgian deep-shelf sediments of southern Germany is combined with investigation of nannofossil assemblage composition and sedimentological interpretations in order to evaluate the impact of regional palaeoenvironmental conditions on isotopic composition of carbonates. This study suggests that carbonate mud was essentially derived from the Jura shallow platform environments and also that the isotopic signature of carbonates deposited in the Swabian Alb deep shelf indirectly expresses the palaeoenvironmental evolution of the platform. Short-term fluctuations in delta(13) C and delta(18)O are probably controlled by changes in salinity (fresh-water input versus evaporation) in platform environments. Long-term fluctuations in carbon and oxygen isotope record throughout the Late Oxfordian-Early Kimmeridgian result from the interplay of increasing temperature and decreasing humidity, which both control the trophic level. Changes from mesotrophic to oligotrophic conditions in platform environments and in the deep-shelf surface waters are inferred. During the Late Oxfordian (Bimammatum Subzone to Planula Zone), the delta(13)C curve displays a positive shift of about 1 parts per thousand, which is comparable in intensity to global perturbations of the carbon cycle. This evident isotopic shift has not been documented yet in other basinal settings. It can be reasonably explained by local palaeoenvironmental changes on the Jura platform (salinity, temperature, and nutrient availability) that controlled platform carbonate production, and the geochemistry of overlying waters. However, increasing carbonate production on the Jura platform and related positive delta(13)C shifts recorded in the Swabian Alb deep shelf are the regional signatures of climatic changes affecting other palaeogeographical domains of Europe in which the carbonate production increased throughout the Late Oxfordian. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Un âge synchrone (partie moyenne de l'Aptien inférieur) de l'ennoiement de la plate-forme Urgonienne helvétique en relation avec l'événement océanique anoxique 1a ("événement Selli"). - La fin de la plate-forme urgonienne, calibrée par analyse des isotopes stables du carbone sur roche totale et par biostratigraphie basée sur les ammonites, est datée du milieu de l'Aptien inférieur (Près de la limite des zones weissi et deshayesi). Cet arrêt, synchrone dans des coupes représentatives du domaine helvétique alpin, est un événement environemental majeur renregistré en France, en Espagne, au Protugal, en Oman, au Mexique et dans le domaine Pacifique. En tenant compte des limites de résolution de la biostatrigraphie et des autres techniques de datation, cet épisode semble également être synchrone à l'échelle globale. Pour beaucoup d'auteurs, la disparition de récifs de coraux et de rudistes corrélée à la fin de la sédimentation urgonienne correspond à la mise en place de conditions anoxiques à l'Aptien inférieur. Celles-ci caractérisent un événement d'importance global: l'événement anoxique OAE 1a.
Resumo:
Long synthetic peptides (LSPs) have a variety of important clinical uses as synthetic vaccines and drugs. Techniques for peptide synthesis were revolutionized in the 1960s and 1980s, after which efficient techniques for purification and characterization of the product were developed. These improved techniques allowed the stepwise synthesis of increasingly longer products at a faster rate, greater purity, and lower cost for clinical use. A synthetic peptide approach, coupled with bioinformatics analysis of genomes, can tremendously expand the search for clinically relevant products. In this Review, we discuss efforts to develop a malaria vaccine from LSPs, among other clinically directed work.
Resumo:
Organic geochemical and stable isotope investigations were performed to provide an insight into the depositional environments, origin and maturity of the organic matter in Jurassic and Cretaceous formations of the External Dinarides. A correlation is made among various parameters acquired from Rock-Eval, gas chromatography-mass spectrometry data and isotope analysis of carbonates and kerogen. Three groups of samples were analysed. The first group includes source rocks derived from Lower Jurassic limestone and Upper Jurassic ``Leme'' beds, the second from Upper Cretaceous carbonates, while the third group comprises oil seeps genetically connected with Upper Cretaceous source rocks. The carbon and oxygen isotopic ratios of all the carbonates display marine isotopic composition. Rock-Eval data and maturity parameter values derived from biomarkers define the organic matter of the Upper Cretaceous carbonates as Type I-S and Type II-S kerogen at the low stage of maturity up to entering the oil-generating window. Lower and Upper Jurassic source rocks contain early mature Type III mixed with Type IV organic matter. All Jurassic and Cretaceous potential source rock extracts show similarity in triterpane and sterane distribution. The hopane and sterane distribution pattern of the studied oil seeps correspond to those from Cretaceous source rocks. The difference between Cretaceous oil seeps and potential source rock extracts was found in the intensity and distribution of n-alkanes, as well as in the abundance of asphaltenes which is connected to their biodegradation stage. In the Jurassic and Cretaceous potential source rock samples a mixture of aromatic hydrocarbons with their alkyl derivatives were indicated, whereas in the oil seep samples extracts only asphaltenes were observed.
Resumo:
BACKGROUND: Colonic endoscopic submucosal dissection (ESD) is challenging as a result of the limited ability of conventional endoscopic instruments to achieve traction and exposure. The aim of this study was to evaluate the feasibility of colonic ESD in a porcine model using a novel endoscopic surgical platform, the Anubiscope (Karl Storz, Tüttlingen, Germany), equipped with two working channels for surgical instruments with four degrees of freedom offering surgical triangulation. METHODS: Nine ESDs were performed by a surgeon without any ESD experience in three swine, at 25, 15, and 10 cm above the anal verge with the Anubiscope. Sixteen ESDs were performed by an experienced endoscopist in five swine using conventional endoscopic instruments. Major ESD steps included the following for both groups: scoring the area, submucosal injection of glycerol, precut, and submucosal dissection. Outcomes measured were as follows: dissection time and speed, specimen size, en bloc dissection, and complications. RESULTS: No perforations occurred in the Anubis group, while there were eight perforations (50 %) in the conventional group (p = 0.02). Complete and en bloc dissections were achieved in all cases in the Anubis group. Mean dissection time for completed cases was statistically significantly shorter in the Anubis group (32.3 ± 16.1 vs. 55.87 ± 7.66 min; p = 0.0019). Mean specimen size was higher in the conventional group (1321 ± 230 vs. 927.77 ± 229.96 mm(2); p = 0.003), but mean dissection speed was similar (35.95 ± 18.93 vs. 23.98 ± 5.02 mm(2)/min in the Anubis and conventional groups, respectively; p = 0.1). CONCLUSIONS: Colonic ESDs were feasible in pig models with the Anubiscope. This surgical endoscopic platform is promising for endoluminal surgical procedures such as ESD, as it is user-friendly, effective, and safe.
Resumo:
BACKGROUND: There is limited safety information on most drugs used during pregnancy. This is especially true for medication against tropical diseases because pharmacovigilance systems are not much developed in these settings. The aim of the present study was to demonstrate feasibility of using Health and Demographic Surveillance System (HDSS) as a platform to monitor drug safety in pregnancy. METHODS: Pregnant women with gestational age below 20 weeks were recruited from Reproductive and Child Health (RCH) clinics or from monthly house visits carried out for the HDSS. A structured questionnaire was used to interview pregnant women. Participants were followed on monthly basis to record any new drug used as well as pregnancy outcome. RESULTS: 1089 pregnant women were recruited; 994 (91.3%) completed the follow-up until delivery. 98% women reported to have taken at least one medication during pregnancy, mainly those used in antenatal programmes. Other most reported drugs were analgesics (24%), antibiotics (17%), and antimalarial (15%), excluding IPTp. Artemether-lumefantrine (AL) was the most used antimalarial for treating illness by nearly 3/4 compared to other groups of malaria drugs. Overall, antimalarial and antibiotic exposures in pregnancy were not significantly associated with adverse pregnancy outcome. Iron and folic acid supplementation were associated with decreased risk of miscarriage/stillbirth (OR 0.1; 0.08 - 0.3). CONCLUSION: Almost all women were exposed to medication during pregnancy. Exposure to iron and folic acid had a beneficial effect on pregnancy outcome. HDSS proved to be a useful platform to establish a reliable pharmacovigilance system in resource-limited countries. Widening drug safety information is essential to facilitate evidence based risk-benefit decision for treatment during pregnancy, a major challenge with newly marketed medicines.
Resumo:
The Valanginian is marked by a major platform demise inducing a hiatus in the northern Tethyan neritic carbonate record from the top of the lower Valanginian to the lower Hauterivian. New biostratigraphic and chemostratigraphic data from the Ollioules section (Provence Platform, southern France) are presented here, demonstrating that a large part of the upper Valanginian is preserved in an inner platform environment. The thick, upper Valanginian, aggrading carbonate succession is observed in an aborted rift domain, implying relatively low subsidence. In this context, a relatively long-term sea-level rise was required to sustain a keep-up style of carbonate production. Like the Apulian Platform, the remarkable preservation of the Provence Platform may have been favored by its remoteness from terrigenous source areas, as suggested by the low clastic inputs and low P-accumulation rates. Two main biotic community replacements are observed in Ollioules. The first saw the development of abundant microbialites and algae at the onset of the late Valanginian. A Tubiphytes concentration occurred during the coolest climatic conditions and the transition towards arid conditions, whereas the subsequent Lithocodium-Bacinella and orbitolinids assemblages developed under low nutrient conditions during a warmer interval. Both assemblages may have been triggered by increased alkalinity. The second community replacement saw the installation of coral- and rudist-dominated communities during the latest Valanginian to early Hauterivian. They indicate a change to oligotrophic, open marine conditions. Six medium-scale sequences have been defined in Ollioules, indicating short-term transgressive-regressive trends superimposed on a long-term transgression. Low nutrient inputs and relatively low subsidence in an aggradational context may explain the survival of the isolated Provence Carbonate Platform during a time of widespread drowning episodes and platform demise in the northern Tethyan domain. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Morphogenesis emerges from complex multiscale interactions between genetic and mechanical processes. To understand these processes, the evolution of cell shape, proliferation and gene expression must be quantified. This quantification is usually performed either in full 3D, which is computationally expensive and technically challenging, or on 2D planar projections, which introduces geometrical artifacts on highly curved organs. Here we present MorphoGraphX ( www.MorphoGraphX.org), a software that bridges this gap by working directly with curved surface images extracted from 3D data. In addition to traditional 3D image analysis, we have developed algorithms to operate on curved surfaces, such as cell segmentation, lineage tracking and fluorescence signal quantification. The software's modular design makes it easy to include existing libraries, or to implement new algorithms. Cell geometries extracted with MorphoGraphX can be exported and used as templates for simulation models, providing a powerful platform to investigate the interactions between shape, genes and growth.