101 resultados para Bayesian priors


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: As imatinib pharmacokinetics are highly variable, plasma levels differ largely between patients under the same dosage. Retrospective studies in chronic myeloid leukemia (CML) patients showed significant correlations between low levels and suboptimal response, as well as between high levels and poor tolerability. Monitoring of trough plasma levels, targeting 1000 μg/L and above, is thus increasingly advised. Our study was launched to assess prospectively the clinical usefulness of systematic imatinib TDM in CML patients. This preliminary analysis addresses the appropriateness of the dosage adjustment approach applied in this study, which targets the recommended trough level and allows an interval of 4-24 h after last drug intake for blood sampling. Methods: Blood samples from the first 15 patients undergoing 1st TDM were obtained 1.5-25 h after last dose. Imatinib plasma levels were measured by LC-MS/MS and the concentrations were extrapolated to trough based on a Bayesian approach using a population pharmacokinetic model. Trough levels were predicted to differ significantly from the target in 12 patients (10 <750 μg/L; 2 >1500 μg/L along with poor tolerance) and individual dose adjustments were proposed. 8 patients underwent a 2nd TDM cycle. Trough levels of 1st and 2nd TDM were compared, the sample drawn 1.5 h after last dose (during distribution phase) was excluded from the analysis. Results: Individual dose adjustments were applied in 6 patients. Observed concentrations extrapolated to trough ranged from 360 to 1832 μg/L (median 725; mean 810, CV 52%) on 1st TDM and from 720 to 1187 μg/L (median 950; mean 940, CV 18%) on 2nd TDM cycle. Conclusions: These preliminary results suggest that TDM of imatinib using a Bayesian interpretation is able to target the recommended trough level of 1000 μg/L and to reduce the considerable differences in trough level exposure between patients (with CV decreasing from 52% to 18%). While this may simplify blood collection in daily practice, as samples do not have to be drawn exactly at trough, the largest possible interval to last drug intake yet remains preferable to avoid sampling during distribution phase leading to biased extrapolation. This encourages the evaluation of the clinical benefit of a routine TDM intervention in CML patients, which the randomized Swiss I-COME trial aims to.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tractography algorithms provide us with the ability to non-invasively reconstruct fiber pathways in the white matter (WM) by exploiting the directional information described with diffusion magnetic resonance. These methods could be divided into two major classes, local and global. Local methods reconstruct each fiber tract iteratively by considering only directional information at the voxel level and its neighborhood. Global methods, on the other hand, reconstruct all the fiber tracts of the whole brain simultaneously by solving a global energy minimization problem. The latter have shown improvements compared to previous techniques but these algorithms still suffer from an important shortcoming that is crucial in the context of brain connectivity analyses. As no anatomical priors are usually considered during the reconstruction process, the recovered fiber tracts are not guaranteed to connect cortical regions and, as a matter of fact, most of them stop prematurely in the WM; this violates important properties of neural connections, which are known to originate in the gray matter (GM) and develop in the WM. Hence, this shortcoming poses serious limitations for the use of these techniques for the assessment of the structural connectivity between brain regions and, de facto, it can potentially bias any subsequent analysis. Moreover, the estimated tracts are not quantitative, every fiber contributes with the same weight toward the predicted diffusion signal. In this work, we propose a novel approach for global tractography that is specifically designed for connectivity analysis applications which: (i) explicitly enforces anatomical priors of the tracts in the optimization and (ii) considers the effective contribution of each of them, i.e., volume, to the acquired diffusion magnetic resonance imaging (MRI) image. We evaluated our approach on both a realistic diffusion MRI phantom and in vivo data, and also compared its performance to existing tractography algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyses and discusses arguments that emerge from a recent discussion about the proper assessment of the evidential value of correspondences observed between the characteristics of a crime stain and those of a sample from a suspect when (i) this latter individual is found as a result of a database search and (ii) remaining database members are excluded as potential sources (because of different analytical characteristics). Using a graphical probability approach (i.e., Bayesian networks), the paper here intends to clarify that there is no need to (i) introduce a correction factor equal to the size of the searched database (i.e., to reduce a likelihood ratio), nor to (ii) adopt a propositional level not directly related to the suspect matching the crime stain (i.e., a proposition of the kind 'some person in (outside) the database is the source of the crime stain' rather than 'the suspect (some other person) is the source of the crime stain'). The present research thus confirms existing literature on the topic that has repeatedly demonstrated that the latter two requirements (i) and (ii) should not be a cause of concern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temporal dynamics of species diversity are shaped by variations in the rates of speciation and extinction, and there is a long history of inferring these rates using first and last appearances of taxa in the fossil record. Understanding diversity dynamics critically depends on unbiased estimates of the unobserved times of speciation and extinction for all lineages, but the inference of these parameters is challenging due to the complex nature of the available data. Here, we present a new probabilistic framework to jointly estimate species-specific times of speciation and extinction and the rates of the underlying birth-death process based on the fossil record. The rates are allowed to vary through time independently of each other, and the probability of preservation and sampling is explicitly incorporated in the model to estimate the true lifespan of each lineage. We implement a Bayesian algorithm to assess the presence of rate shifts by exploring alternative diversification models. Tests on a range of simulated data sets reveal the accuracy and robustness of our approach against violations of the underlying assumptions and various degrees of data incompleteness. Finally, we demonstrate the application of our method with the diversification of the mammal family Rhinocerotidae and reveal a complex history of repeated and independent temporal shifts of both speciation and extinction rates, leading to the expansion and subsequent decline of the group. The estimated parameters of the birth-death process implemented here are directly comparable with those obtained from dated molecular phylogenies. Thus, our model represents a step towards integrating phylogenetic and fossil information to infer macroevolutionary processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present MBIS (Multivariate Bayesian Image Segmentation tool), a clustering tool based on the mixture of multivariate normal distributions model. MBIS supports multichannel bias field correction based on a B-spline model. A second methodological novelty is the inclusion of graph-cuts optimization for the stationary anisotropic hidden Markov random field model. Along with MBIS, we release an evaluation framework that contains three different experiments on multi-site data. We first validate the accuracy of segmentation and the estimated bias field for each channel. MBIS outperforms a widely used segmentation tool in a cross-comparison evaluation. The second experiment demonstrates the robustness of results on atlas-free segmentation of two image sets from scan-rescan protocols on 21 healthy subjects. Multivariate segmentation is more replicable than the monospectral counterpart on T1-weighted images. Finally, we provide a third experiment to illustrate how MBIS can be used in a large-scale study of tissue volume change with increasing age in 584 healthy subjects. This last result is meaningful as multivariate segmentation performs robustly without the need for prior knowledge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article extends existing discussion in literature on probabilistic inference and decision making with respect to continuous hypotheses that are prevalent in forensic toxicology. As a main aim, this research investigates the properties of a widely followed approach for quantifying the level of toxic substances in blood samples, and to compare this procedure with a Bayesian probabilistic approach. As an example, attention is confined to the presence of toxic substances, such as THC, in blood from car drivers. In this context, the interpretation of results from laboratory analyses needs to take into account legal requirements for establishing the 'presence' of target substances in blood. In a first part, the performance of the proposed Bayesian model for the estimation of an unknown parameter (here, the amount of a toxic substance) is illustrated and compared with the currently used method. The model is then used in a second part to approach-in a rational way-the decision component of the problem, that is judicial questions of the kind 'Is the quantity of THC measured in the blood over the legal threshold of 1.5 μg/l?'. This is pointed out through a practical example.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending the corresponding approaches to the regional scale represents a major, and as-of-yet largely unresolved, challenge. To address this problem, we have developed a downscaling procedure based on a non-linear Bayesian sequential simulation approach. The basic objective of this algorithm is to estimate the value of the sparsely sampled hydraulic conductivity at non-sampled locations based on its relation to the electrical conductivity, which is available throughout the model space. The in situ relationship between the hydraulic and electrical conductivities is described through a non-parametric multivariate kernel density function. This method is then applied to the stochastic integration of low-resolution, re- gional-scale electrical resistivity tomography (ERT) data in combination with high-resolution, local-scale downhole measurements of the hydraulic and electrical conductivities. Finally, the overall viability of this downscaling approach is tested and verified by performing and comparing flow and transport simulation through the original and the downscaled hydraulic conductivity fields. Our results indicate that the proposed procedure does indeed allow for obtaining remarkably faithful estimates of the regional-scale hydraulic conductivity structure and correspondingly reliable predictions of the transport characteristics over relatively long distances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of geophysical methods, such as ground-penetrating radar (GPR), have the potential to provide valuable information on hydrological properties in the unsaturated zone. In particular, the stochastic inversion of such data within a coupled geophysical-hydrological framework may allow for the effective estimation of vadose zone hydraulic parameters and their corresponding uncertainties. A critical issue in stochastic inversion is choosing prior parameter probability distributions from which potential model configurations are drawn and tested against observed data. A well chosen prior should reflect as honestly as possible the initial state of knowledge regarding the parameters and be neither overly specific nor too conservative. In a Bayesian context, combining the prior with available data yields a posterior state of knowledge about the parameters, which can then be used statistically for predictions and risk assessment. Here we investigate the influence of prior information regarding the van Genuchten-Mualem (VGM) parameters, which describe vadose zone hydraulic properties, on the stochastic inversion of crosshole GPR data collected under steady state, natural-loading conditions. We do this using a Bayesian Markov chain Monte Carlo (MCMC) inversion approach, considering first noninformative uniform prior distributions and then more informative priors derived from soil property databases. For the informative priors, we further explore the effect of including information regarding parameter correlation. Analysis of both synthetic and field data indicates that the geophysical data alone contain valuable information regarding the VGM parameters. However, significantly better results are obtained when we combine these data with a realistic, informative prior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a thorough aggregation of probability and graph theory, Bayesian networks currently enjoy widespread interest as a means for studying factors that affect the coherent evaluation of scientific evidence in forensic science. Paper I of this series of papers intends to contribute to the discussion of Bayesian networks as a framework that is helpful for both illustrating and implementing statistical procedures that are commonly employed for the study of uncertainties (e.g. the estimation of unknown quantities). While the respective statistical procedures are widely described in literature, the primary aim of this paper is to offer an essentially non-technical introduction on how interested readers may use these analytical approaches - with the help of Bayesian networks - for processing their own forensic science data. Attention is mainly drawn to the structure and underlying rationale of a series of basic and context-independent network fragments that users may incorporate as building blocs while constructing larger inference models. As an example of how this may be done, the proposed concepts will be used in a second paper (Part II) for specifying graphical probability networks whose purpose is to assist forensic scientists in the evaluation of scientific evidence encountered in the context of forensic document examination (i.e. results of the analysis of black toners present on printed or copied documents).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The estimation of demographic parameters from genetic data often requires the computation of likelihoods. However, the likelihood function is computationally intractable for many realistic evolutionary models, and the use of Bayesian inference has therefore been limited to very simple models. The situation changed recently with the advent of Approximate Bayesian Computation (ABC) algorithms allowing one to obtain parameter posterior distributions based on simulations not requiring likelihood computations. RESULTS: Here we present ABCtoolbox, a series of open source programs to perform Approximate Bayesian Computations (ABC). It implements various ABC algorithms including rejection sampling, MCMC without likelihood, a Particle-based sampler and ABC-GLM. ABCtoolbox is bundled with, but not limited to, a program that allows parameter inference in a population genetics context and the simultaneous use of different types of markers with different ploidy levels. In addition, ABCtoolbox can also interact with most simulation and summary statistics computation programs. The usability of the ABCtoolbox is demonstrated by inferring the evolutionary history of two evolutionary lineages of Microtus arvalis. Using nuclear microsatellites and mitochondrial sequence data in the same estimation procedure enabled us to infer sex-specific population sizes and migration rates and to find that males show smaller population sizes but much higher levels of migration than females. CONCLUSION: ABCtoolbox allows a user to perform all the necessary steps of a full ABC analysis, from parameter sampling from prior distributions, data simulations, computation of summary statistics, estimation of posterior distributions, model choice, validation of the estimation procedure, and visualization of the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geophysical methods have the potential to provide valuable information on hydrological properties in the unsaturated zone. In particular, time-lapse geophysical data, when coupled with a hydrological model and inverted stochastically, may allow for the effective estimation of subsurface hydraulic parameters and their corresponding uncertainties. In this study, we use a Bayesian Markov-chain-Monte-Carlo (MCMC) inversion approach to investigate how much information regarding vadose zone hydraulic properties can be retrieved from time-lapse crosshole GPR data collected at the Arrenaes field site in Denmark during a forced infiltration experiment.