34 resultados para BATIO3-COFE2O4 NANOSTRUCTURES
Resumo:
Characterizing the risks posed by nanomaterials is extraordinarily complex because these materials can have a wide range of sizes, shapes, chemical compositions and surface modifications, all of which may affect toxicity. There is an urgent need for a testing strategy that can rapidly and efficiently provide a screening approach for evaluating the potential hazard of nanomaterials and inform the prioritization of additional toxicological testing where necessary. Predictive toxicity models could form an integral component of such an approach by predicting which nanomaterials, as a result of their physico-chemical characteristics, have potentially hazardous properties. Strategies for directing research towards predictive models and the ancillary benefits of such research are presented here.
Resumo:
Therapeutic nanoparticles (NPs) are used in nanomedicine as drug carriers or imaging agents, providing increased selectivity/specificity for diseased tissues. The first NPs in nanomedicine were developed for increasing the efficacy of known drugs displaying dose-limiting toxicity and poor bioavailability and for enhancing disease detection. Nanotechnologies have gained much interest owing to their huge potential for applications in industry and medicine. It is necessary to ensure and control the biocompatibility of the components of therapeutic NPs to guarantee that intrinsic toxicity does not overtake the benefits. In addition to monitoring their toxicity in vitro, in vivo and in silico, it is also necessary to understand their distribution in the human body, their biodegradation and excretion routes and dispersion in the environment. Therefore, a deep understanding of their interactions with living tissues and of their possible effects in the human (and animal) body is required for the safe use of nanoparticulate formulations. Obtaining this information was the main aim of the NanoTEST project, and the goals of the reports collected together in this special issue are to summarise the observations and results obtained by the participating research teams and to provide methodological tools for evaluating the biological impact of NPs.
Resumo:
Nipple-like nanostructures covering the corneal surfaces of moths, butterflies, and Drosophila have been studied by electron and atomic force microscopy, and their antireflective properties have been described. In contrast, corneal nanostructures of the majority of other insect orders have either been unexamined or examined by methods that did not allow precise morphological characterization. Here we provide a comprehensive analysis of corneal surfaces in 23 insect orders, revealing a rich diversity of insect corneal nanocoatings. These nanocoatings are categorized into four major morphological patterns and various transitions between them, many, to our knowledge, never described before. Remarkably, this unexpectedly diverse range of the corneal nanostructures replicates the complete set of Turing patterns, thus likely being a result of processes similar to those modeled by Alan Turing in his famous reaction-diffusion system. These findings reveal a beautiful diversity of insect corneal nanostructures and shed light on their molecular origin and evolutionary diversification. They may also be the first-ever biological example of Turing nanopatterns.