86 resultados para Automotive Controls


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) are neuronal Na(+)-conducting channels activated by extracellular acidification. ASICs are involved in pain sensation, expression of fear, and neurodegeneration after ischemic stroke. Functional ASICs are composed of three identical or homologous subunits, whose extracellular part has a handlike structure. Currently, it is unclear how protonation of residues in extracellular domains controls ASIC activity. Knowledge of these mechanisms would allow a rational development of drugs acting on ASICs. Protonation may induce conformational changes that control the position of the channel gate. We used voltage-clamp fluorometry with fluorophores attached to residues in different domains of ASIC1a to detect conformational changes. Comparison of the timing of fluorescence and current signals identified residues involved in movements that preceded desensitization and may therefore be associated with channel opening or early steps leading to desensitization. Other residues participated in movements intimately linked to desensitization and recovery from desensitization. Fluorescence signals of all mutants were detected at more alkaline pH than ionic currents. Their midpoint of pH dependence was close to that of steady-state desensitization, whereas the steepness of the pH fluorescence relationship was closer to that of current activation. A sequence of movements was observed upon acidification, and its backward movements during recovery from desensitization occurred in the reverse order, indicating that the individual steps are interdependent. Furthermore, the fluorescence signal of some labeled residues in the finger domain was strongly quenched by a Trp residue in the neighboring β-ball domain. Upon channel activation, their fluorescence intensity increased, indicating that the finger moved away from the β ball. This extensive analysis of activity-dependent conformational changes in ASICs sheds new light on the mechanisms by which protonation controls ASIC activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biochemical evidence implicates the death-domain (DD) protein PIDD as a molecular switch capable of signaling cell survival or death in response to genotoxic stress. PIDD activity is determined by binding-partner selection at its DD: whereas recruitment of RIP1 triggers prosurvival NF-κB signaling, recruitment of RAIDD activates proapoptotic caspase-2 via PIDDosome formation. However, it remains unclear how interactor selection, and thus fate decision, is regulated at the PIDD platform. We show that the PIDDosome functions in the "Chk1-suppressed" apoptotic response to DNA damage, a conserved ATM/ATR-caspase-2 pathway antagonized by Chk1. In this pathway, ATM phosphorylates PIDD on Thr788 within the DD. This phosphorylation is necessary and sufficient for RAIDD binding and caspase-2 activation. Conversely, nonphosphorylatable PIDD fails to bind RAIDD or activate caspase-2, and engages prosurvival RIP1 instead. Thus, ATM phosphorylation of the PIDD DD enables a binary switch through which cells elect to survive or die upon DNA injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth of numerous cancer types is believed to be driven by a subpopulation of poorly differentiated cells, often referred to as cancer stem cells (CSCs), that have the capacity for self-renewal, tumor initiation, and generation of nontumorigenic progeny. Despite their potentially key role in tumor establishment and maintenance, the energy requirements of these cells and the mechanisms that regulate their energy production are unknown. Here, we show that the oncofetal insulin-like growth factor 2 mRNA-binding protein 2 (IMP2, IGF2BP2) regulates oxidative phosphorylation (OXPHOS) in primary glioblastoma (GBM) sphere cultures (gliomaspheres), an established in vitro model for CSC expansion. We demonstrate that IMP2 binds several mRNAs that encode mitochondrial respiratory chain complex subunits and that it interacts with complex I (NADH:ubiquinone oxidoreductase) proteins. Depletion of IMP2 in gliomaspheres decreases their oxygen consumption rate and both complex I and complex IV activity that results in impaired clonogenicity in vitro and tumorigenicity in vivo. Importantly, inhibition of OXPHOS but not of glycolysis abolishes GBM cell clonogenicity. Our observations suggest that gliomaspheres depend on OXPHOS for their energy production and survival and that IMP2 expression provides a key mechanism to ensure OXPHOS maintenance by delivering respiratory chain subunit-encoding mRNAs to mitochondria and contributing to complex I and complex IV assembly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent legislations oblige organizations to monitor the effectiveness of internal control mechanisms that are necessary to prevent fraud. However, little is known about the effectiveness of different internal controls. We investigate whether the duty to sign work results-one of the most prominent internal control mechanisms-is effective to prevent fraud under different superior instructions. We use a 2×2 between-subjects experimental design with accountability (duty to sign work results vs. no duty to sign) and superior instructions (with vs. without profit maximization cue) as independent variables. Both manipulations of superior instructions reminded people to respect accounting standards and principles but in one condition, an instruction to increase revenues was integrated as profit maximization cue. We expected this cue to trigger a profit maximization decision frame that increases the likelihood for fraudulent revenue recording. 58 managers from an executive MBA class participated in the experiment. We find that superior instructions interact with accountability. Fraudulent revenue recording was particularly observed when people received instructions to increase revenues and had to sign their work results. Consequently, fraudulent behavior can occur without pressure to commit fraud due to profit maximization cues that are communicated by a superior and despite implemented internal control mechanisms. We discuss possible implications of our results for the prevention of fraudulent behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mucocutaneous leishmaniasis is caused by infections with intracellular parasites of the Leishmania Viannia subgenus, including Leishmania guyanensis. The pathology develops after parasite dissemination to nasopharyngeal tissues, where destructive metastatic lesions form with chronic inflammation. Currently, the mechanisms involved in lesion development are poorly understood. Here we show that metastasizing parasites have a high Leishmania RNA virus-1 (LRV1) burden that is recognized by the host Toll-like receptor 3 (TLR3) to induce proinflammatory cytokines and chemokines. Paradoxically, these TLR3-mediated immune responses rendered mice more susceptible to infection, and the animals developed an increased footpad swelling and parasitemia. Thus, LRV1 in the metastasizing parasites subverted the host immune response to Leishmania and promoted parasite persistence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nuclear factor of activated T cells (NFAT) family of transcription factors controls calcium signaling in T lymphocytes. In this study, we have identified a crucial regulatory role of the transcription factor NFATc2 in T cell-dependent experimental colitis. Similar to ulcerative colitis in humans, the expression of NFATc2 was up-regulated in oxazolone-induced chronic intestinal inflammation. Furthermore, NFATc2 deficiency suppressed colitis induced by oxazolone administration. This finding was associated with enhanced T cell apoptosis in the lamina propria and strikingly reduced production of IL-6, -13, and -17 by mucosal T lymphocytes. Further studies using knockout mice showed that IL-6, rather than IL-23 and -17, are essential for oxazolone colitis induction. Administration of hyper-IL-6 blocked the protective effects of NFATc2 deficiency in experimental colitis, suggesting that IL-6 signal transduction plays a major pathogenic role in vivo. Finally, adoptive transfer of IL-6 and wild-type T cells demonstrated that oxazolone colitis is critically dependent on IL-6 production by T cells. Collectively, these results define a unique regulatory role for NFATc2 in colitis by controlling mucosal T cell activation in an IL-6-dependent manner. NFATc2 in T cells thus emerges as a potentially new therapeutic target for inflammatory bowel diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel two-component system, CbrA-CbrB, was discovered in Pseudomonas aeruginosa; cbrA and cbrB mutants of strain PAO were found to be unable to use several amino acids (such as arginine, histidine and proline), polyamines and agmatine as sole carbon and nitrogen sources. These mutants were also unable to use, or used poorly, many other carbon sources, including mannitol, glucose, pyruvate and citrate. A 7 kb EcoRI fragment carrying the cbrA and cbrB genes was cloned and sequenced. The cbrA and cbrB genes encode a sensor/histidine kinase (Mr 108 379, 983 residues) and a cognate response regulator (Mr 52 254, 478 residues) respectively. The amino-terminal half (490 residues) of CbrA appears to be a sensor membrane domain, as predicted by 12 possible transmembrane helices, whereas the carboxy-terminal part shares homology with the histidine kinases of the NtrB family. The CbrB response regulator shows similarity to the NtrC family members. Complementation and primer extension experiments indicated that cbrA and cbrB are transcribed from separate promoters. In cbrA or cbrB mutants, as well as in the allelic argR9901 and argR9902 mutants, the aot-argR operon was not induced by arginine, indicating an essential role for this two-component system in the expression of the ArgR-dependent catabolic pathways, including the aruCFGDB operon specifying the major aerobic arginine catabolic pathway. The histidine catabolic enzyme histidase was not expressed in cbrAB mutants, even in the presence of histidine. In contrast, proline dehydrogenase, responsible for proline utilization (Pru), was expressed in a cbrB mutant at a level comparable with that of the wild-type strain. When succinate or other C4-dicarboxylates were added to proline medium at 1 mM, the cbrB mutant was restored to a Pru+ phenotype. Such a succinate-dependent Pru+ property was almost abolished by 20 mM ammonia. In conclusion, the CbrA-CbrB system controls the expression of several catabolic pathways and, perhaps together with the NtrB-NtrC system, appears to ensure the intracellular carbon: nitrogen balance in P. aeruginosa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RATIONALE: The myeloid differentiation factor (MyD)88/interleukin (IL)-1 axis activates self-antigen-presenting cells and promotes autoreactive CD4(+) T-cell expansion in experimental autoimmune myocarditis, a mouse model of inflammatory heart disease. OBJECTIVE: The aim of this study was to determine the role of MyD88 and IL-1 in the progression of acute myocarditis to an end-stage heart failure. METHODS AND RESULTS: Using alpha-myosin heavy chain peptide (MyHC-alpha)-loaded, activated dendritic cells, we induced myocarditis in wild-type and MyD88(-/-) mice with similar distributions of heart-infiltrating cell subsets and comparable CD4(+) T-cell responses. Injection of complete Freund's adjuvant (CFA) or MyHC-alpha/CFA into diseased mice promoted cardiac fibrosis, induced ventricular dilation, and impaired heart function in wild-type but not in MyD88(-/-) mice. Experiments with chimeric mice confirmed the bone marrow origin of the fibroblasts replacing inflammatory infiltrates and showed that MyD88 and IL-1 receptor type I signaling on bone marrow-derived cells was critical for development of cardiac fibrosis during progression to heart failure. CONCLUSIONS: Our findings indicate a critical role of MyD88/IL-1 signaling in the bone marrow compartment in postinflammatory cardiac fibrosis and heart failure and point to novel therapeutic strategies against inflammatory cardiomyopathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NFAT transcription factors control T-cell activation and function. Specifically, the transcription factor NFATc2 affects the regulation of cell differentiation and growth and plays a critical role in the development of colonic inflammation. Here, we used an experimental model of colitis-associated colorectal carcinoma to investigate the contribution of NFATc2 to the promotion of colonic tumors. Compared with wild-type animals that readily presented with multiple colon tumors, NFATc2-deficient mice were protected from tumor development. This observed decrease in colonic tumor progression was associated with reduced endoscopic inflammation, increased apoptosis of lamina propria T lymphocytes, and significantly reduced levels of the critical proinflammatory cytokines interleukin (IL)-21 and IL-6. Administration of hyper IL-6 abrogated protection from tumor progression in NFATc2-knockout mice and restored tumor incidence to control levels. Taken together, our findings highlight a pivotal role for NFATc2 in the establishment of inflammation-associated colorectal tumors mediated by control of IL-6 expression. Cancer Res; 72(17); 4340-50. ©2012 AACR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Newborn screening (NBS) for Cystic Fibrosis (CF) has been introduced in many countries, but there is no ideal protocol suitable for all countries. This retrospective study was conducted to evaluate whether the planned two step CF NBS with immunoreactive trypsinogen (IRT) and 7 CFTR mutations would have detected all clinically diagnosed children with CF in Switzerland. METHODS: IRT was measured using AutoDELFIA Neonatal IRT-Kit in stored NBS cards. RESULTS: Between 2006 and 2009, 66 children with CF were reported, 4 of which were excluded for various reasons (born in another country, NBS at 6 months, no informed consent). 98% (61/62) had significantly higher IRT compared to matched control group. There was one false negative IRT result in an asymptomatic child with atypical CF (normal pancreatic function and sweat test). CONCLUSIONS: All children but one with atypical CF would have been detected with the planned two step protocol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monocarboxylate transporter MCT4 is a high capacity carrier important for lactate release from highly glycolytic cells. In the central nervous system, MCT4 is predominantly expressed by astrocytes. Surprisingly, MCT4 expression in cultured astrocytes is low, suggesting that a physiological characteristic, not met in culture conditions, is necessary. Here we demonstrate that reducing oxygen concentration from 21% to either 1 or 0% restored in a concentration-dependent manner the expression of MCT4 at the mRNA and protein levels in cultured astrocytes. This effect was specific for MCT4 since the expression of MCT1, the other astrocytic monocarboxylate transporter present in vitro, was not altered in such conditions. MCT4 expression was shown to be controlled by the transcription factor hypoxia-inducible factor-1α (HIF-1α) since under low oxygen levels, transfecting astrocyte cultures with a siRNA targeting HIF-1α largely prevented MCT4 induction. Moreover, the prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG) induced MCT4 expression in astrocytes cultured in presence of 21% oxygen. In parallel, glycolytic activity was enhanced by exposure to 1% oxygen as demonstrated by the increased lactate release, an effect dependent on MCT4 expression. Finally, MCT4 expression was found to be necessary for astrocyte survival when exposed for a prolonged period to 1% oxygen. These data suggest that a major determinant of astrocyte MCT4 expression in vivo is likely the oxygen tension. This could be relevant in areas of high neuronal activity and oxygen consumption, favouring astrocytic lactate supply to neurons. Moreover, it could also play an important role for neuronal recovery after an ischemic episode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity results from chronic energy surplus and excess lipid storage in white adipose tissue (WAT). In contrast, brown adipose tissue (BAT) efficiently burns lipids through adaptive thermogenesis. Studying mouse models, we show that cyclooxygenase (COX)-2, a rate-limiting enzyme in prostaglandin (PG) synthesis, is a downstream effector of beta-adrenergic signaling in WAT and is required for the induction of BAT in WAT depots. PG shifted the differentiation of defined mesenchymal progenitors toward a brown adipocyte phenotype. Overexpression of COX-2 in WAT induced de novo BAT recruitment in WAT, increased systemic energy expenditure, and protected mice against high-fat diet-induced obesity. Thus, COX-2 appears integral to de novo BAT recruitment, which suggests that the PG pathway regulates systemic energy homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutamatergic gliotransmission provides a stimulatory input to excitatory synapses in the hippocampal dentate gyrus. Here, we show that tumor necrosis factor-alpha (TNFα) critically controls this process. With constitutive TNFα present, activation of astrocyte P2Y1 receptors induces localized [Ca(2+)](i) elevations followed by glutamate release and presynaptic NMDA receptor-dependent synaptic potentiation. In preparations lacking TNFα, astrocytes respond with identical [Ca(2+)](i) elevations but fail to induce neuromodulation. We find that TNFα specifically controls the glutamate release step of gliotransmission. In cultured astrocytes lacking TNFα glutamate exocytosis is dramatically slowed down due to altered vesicle docking. Addition of low picomolar TNFα promptly reconstitutes both normal exocytosis in culture and gliotransmission in situ. Alternatively, gliotransmission can be re-established without adding TNFα, by limiting glutamate uptake, which compensates slower release. These findings demonstrate that gliotransmission and its synaptic effects are controlled not only by astrocyte [Ca(2+)](i) elevations but also by permissive/homeostatic factors like TNFα. VIDEO ABSTRACT:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The epithelial Na(+) channel ENaC is a key player in the maintenance of whole body Na(+) balance, and consequently of blood pressure. It is tightly regulated by numerous signaling pathways including ubiquitylation via the ubiquitin-protein ligase Nedd4-2. This mechanism is itself under the control of several kinases, which phosphorylate Nedd4-2, thereby interfering with ENaC/Nedd4-2 interaction, or by Usp2-45, which binds to and deubiquitylates ENaC. Another, different regulatory mechanism concerns the proteolytic activation of ENaC, during which the channel is cleaved on its luminal side by intracellular convertases such as furin, and further activated by extracellular proteases such as CAP-1. This process is regulated as well but the underlying mechanisms are not understood. Previously, evidence was provided that the ubiquitylation status of ENaC may affect the cleavage of the channel. When ubiquitylation of ENaC was reduced, either by co-expressing Usp2-45, or mutating either the ENaC PY-motifs (i.e. the binding sites for Nedd4-2) or intracellular lysines (i.e. ubiquitylation sites), the level of channel cleavage was increased. Here we demonstrate that lysine-mutated ENaC channels are not ubiquitylated at the cell surface, are preferentially cleaved, and Usp2-45 does not affect their cleavage efficiency. We further show by limited proteolysis that the intracellular ubiquitylation status of ENaC affects the extracellular conformation of αENaC, by demonstrating that non-ubiquitylated channels are more efficiently cleaved when treated with extracellularly added trypsin or chymotrypsin. These results present a new paradigm in which an intracellular, post-translational modification (e.g. ubiquitylation) of a transmembrane protein can affect its extracellular conformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Growth is a central process in paediatrics. Weight and height evaluation are therefore routine exams for every child but in some situation, particularly inflammatory bowel disease (IBD), a wider evaluation of nutritional status needs to be performed. Objectives: To assess the accuracy of bio-impedance analysis (BIA) compared to the gold standard dual energy X-ray absorptiometry (DEXA) in estimating percentage body fat (fat mass; FM) and lean body mass (fat free mass; FFM) in children with inflammatory bowel disease (IBD). To compare FM and FFM levels between patients with IBD and healthy controls. Methods: Twenty-nine healthy controls (12 females; mean age: 12.7 ± 1.9 years) and 21 patients (11 females; 14.3 ± 1.3 years) were recruited from August 2011 to October 2012 at our institution. BIA was performed in all children and DEXA in patients only. Concordance between BIA and DEXA was assessed using Lin's concordance correlation and the Bland-Altman method. Between-group comparisons were made using analysis of variance adjusting for age. Results: BIA-derived FM% showed a good concordance with DEXA-derived values, while BIA-derived FFM% tended to be slightly higher than DEXA-derived values (table). No differences were found between patients and controls regarding body mass index (mean ± SD: 19.3 ± 3.3 vs. 20.1 ± 2.8 kg/m2, respectively; age-adjusted P = 0.08) and FM% (boys: 25.3 ± 10.2 vs. 22.6 ± 7.1%, for patients and controls, respectively; P = 0.20; girls: 28.2 ± 5.7 vs. 26.4 ± 7.7%; P = 0.91). Also, no differences were found regarding FFM% in boys (74.9 ± 10.2 vs. 77.4 ± 7.1%; P = 0.22) and girls (71.8 ± 5.6 vs. 73.5 ± 7.7%; P = 0.85). Conclusion: BIA adequately assesses body composition (FM%) in children with IBD and could advantageously replace DEXA, which is more expensive and less available. No differences in body composition were found between children with IBD and healthy controls.