283 resultados para Arrhythmogenic Right Ventricular Dysplasia
Resumo:
Adverse events in utero are associated with the occurrence of chronic diseases in adulthood. We previously demonstrated in mice that perinatal hypoxia resulted in altered pulmonary circulation in adulthood, with a decreased endothelium-dependent relaxation of pulmonary arteries, associated with long-term alterations in the nitric oxide (NO)/cyclic GMP pathway. The present study investigated whether inhaled NO (iNO) administered simultaneously to perinatal hypoxia could have potential beneficial effects on the adult pulmonary circulation. Indeed, iNO is the therapy of choice in humans presenting neonatal pulmonary hypertension. Long-term effects of neonatal iNO therapy on adult pulmonary circulation have not yet been investigated. Pregnant mice were placed in hypoxia (13% O2) with simultaneous administration of iNO 5 days before delivery until 5 days after birth. Pups were then raised in normoxia until adulthood. Perinatal iNO administration completely restored acetylcholine-induced relaxation, as well as endothelial nitric oxide synthase protein content, in isolated pulmonary arteries of adult mice born in hypoxia. Right ventricular hypertrophy observed in old mice born in hypoxia compared to controls was also prevented by perinatal iNO treatment. Therefore, simultaneous administration of iNO during perinatal hypoxic exposure seems able to prevent adverse effects of perinatal hypoxia on the adult pulmonary circulation.
Resumo:
OBJECTIVES: Increasing evidence suggests that left ventricular remodeling is associated with a shift from fatty acid to glucose metabolism for energy production. The aim of this study was to determine whether left ventricular remodeling with and without late-onset heart failure after myocardial infarction is associated with regional changes in the expression of regulatory proteins of glucose or fatty acid metabolism. METHODS: Myocardial infarction was induced in rats by ligation of the left anterior descending coronary artery (LAD). In infarcted and sham-operated hearts the peri-infarction region (5-mm zone surrounding the region at risk), the interventricular septum and the right ventricular free wall were separated for analysis. RESULTS: At 8 and 20 weeks after LAD ligation, the peri-infarction region and the septum exhibited marked re-expression of atrial natriuretic factor [+252+/-37 and +1093+/-279%, respectively, in the septum (P<0.05)] and of alpha-smooth muscle actin [+34+/-10 and +43+/-14%, respectively, in the septum (P<0.05)]. At 8 weeks, when left ventricular hypertrophy was present without signs of heart failure, myocardial mRNA expression of glucose transporters (GLUT-1 and GLUT-4) was not altered, whereas mRNA expression of medium-chain acyl-CoA dehydrogenase (MCAD) was significantly reduced in the peri-infarction region (-25+/-7%; P<0.05). In hearts exhibiting heart failure 20 weeks after infarct-induction there was a change in all three ventricular regions of both mRNA and protein content of GLUT-1 [+72+/-28 and +121+/-15%, respectively, in the peri-infarction region (P<0.05)] and MCAD [-29+/-9 and -56+/-4%, respectively, in the peri-infarction region (P<0.05)]. CONCLUSION: In rats with large myocardial infarction, progression from compensated remodeling to overt heart failure is associated with upregulation of GLUT-1 and downregulation of MCAD in both the peri-infarction region and the septum.
Resumo:
INTRODUCTION: Pulmonary hypertension is a hemodynamic condition occurring rarely in pediatrics. Nevertheless, it is associated with significant morbidity and mortality. When characterized by progressive pulmonary vascular structural changes, the disease is called pulmonary arterial hypertension (PAH). It results in increased pulmonary vascular resistance and eventual right ventricular failure. In the vast majority of cases, pediatric PAH is idiopathic or associated with congenital heart disease, and, contrary to adult PAH, is rarely associated with connective tissue, portal hypertension, HIV infection or thromboembolic disease. AREAS COVERED: This article reviews the current drug therapies available for the management of pediatric PAH. These treatments target the recognized pathophysiological pathways of PAH with endothelin-1 receptor antagonists, prostacyclin analogs and PDE type 5 inhibitors. New treatments and explored pathways are briefly discussed. EXPERT OPINION: Although there is still no cure for PAH, quality of life and survival have been improved significantly with specific drug therapies. Nevertheless, management of pediatric PAH remains challenging, and depends mainly on results from adult clinical trials and pediatric experts. Further research on PAH-specific treatments in the pediatric population and data from international registries are needed to identify optimal therapeutic strategies and treatment goals in the pediatric population.
Resumo:
Excessive proliferation of vascular wall cells underlies the development of elevated vascular resistance in hypoxic pulmonary hypertension (PH), but the responsible mechanisms remain unclear. Growth-promoting effects of catecholamines may contribute. Hypoxemia causes sympathoexcitation, and prolonged stimulation of alpha(1)-adrenoceptors (alpha(1)-ARs) induces hypertrophy and hyperplasia of arterial smooth muscle cells and adventitial fibroblasts. Catecholamine trophic actions in arteries are enhanced when other conditions favoring growth or remodeling are present, e.g., injury or altered shear stress, in isolated pulmonary arteries from rats with hypoxic PH. The present study examined the hypothesis that catecholamines contribute to pulmonary vascular remodeling in vivo in hypoxic PH. Mice genetically deficient in norepinephrine and epinephrine production [dopamine beta-hydroxylase(-/-) (DBH(-/-))] or alpha(1)-ARs were examined for alterations in PH, cardiac hypertrophy, and vascular remodeling after 21 days exposure to normobaric 0.1 inspired oxygen fraction (Fi(O(2))). A decrease in the lumen area and an increase in the wall thickness of arteries were strongly inhibited in knockout mice (order of extent of inhibition: DBH(-/-) = alpha(1D)-AR(-/-) > alpha(1B)-AR(-/-)). Distal muscularization of small arterioles was also reduced (DBH(-/-) > alpha(1D)-AR(-/-) > alpha(1B)-AR(-/-) mice). Despite these reductions, increases in right ventricular pressure and hypertrophy were not attenuated in DBH(-/-) and alpha(1B)-AR(-/-) mice. However, hematocrit increased more in these mice, possibly as a consequence of impaired cardiovascular activation that occurs during reduction of Fi(O(2)). In contrast, in alpha(1D)-AR(-/-) mice, where hematocrit increased the same as in wild-type mice, right ventricular pressure was reduced. These data suggest that catecholamine stimulation of alpha(1B)- and alpha(1D)-ARs contributes significantly to vascular remodeling in hypoxic PH.
Resumo:
Objective: The aim of this study was to investigate the feasibility of transventricular-transseptal approach (TVSA) for extrapleural transcatheter aortic valved stent implantation via a subxyphoidian access. Methods: In five porcine experiments (52.3 +/- 10.9 kg) the right ventricle was exposed via subxyphoidian access. Under the guidance of intracardiac echocardiography (ICE) and fluoroscopy, the transseptal access from right ventricle to left ventricle was created progressively by puncture and dilation with dilators (8F-26F). Valved stents built in-house from commercial tanned pericardium and self-expandable Nitinol stents were loaded into a cartridge. A delivery sheath was then introduced from the right ventricle into the left ventricle and then into the ascending aorta. The cartridge was connected and the valved stent was deployed in the aortic position. Then, the ventricular septal access was sealed with an Amplatzer septal occluder device and the right ventricular access was closed by tying prepared purse-string suture directly. Thirty minutes after the whole procedure, the animals were sacrificed for macroscopic evaluation of the position of valved stent and septal closure device. Result: Procedural success of TVSA was 100% at the first attempt. Mean procedure time was 49 +/- 4 min. Progressive dilatation of the transseptal access resulted in a measurable ventricular septal defect (VSD) after dilator sizes 18F and more. All valved stents were delivered at the target site over the native aortic valve with good acute valve function and no paravalvular leaks. During the procedure, premature beats (5/5) and supraventriclar tachycardias (5/5) were observed, but no atrial-ventricular block (0/5) occurred. Heart rate before (after) was 90 +/- 3 beats min(-1) (100 +/- 2 beats min(-1): p < 0.05), whereas blood pressure was 60 + 1 mm Hg (55 + 2 mm Hg (p < 0.05)). Total blood loss was 280 + 10 ml. The Amplatzer septal occluder devices were fully deployed and the ventricular septal accesses were sealed successfully, without detectable residual shunt. Conclusion: Trans-catheter implantation of aortic valved stent via extrapleural transventricular-transseptal access is technically feasible and has the potential for a simplified procedure under local anaesthesia. (C) 2010 European Association for Cardio-Thoracic Surgery. Published by Elsevier B. V. All rights reserved.
Resumo:
High-altitude destinations are visited by increasing numbers of children and adolescents. High-altitude hypoxia triggers pulmonary hypertension that in turn may have adverse effects on cardiac function and may induce life-threatening high-altitude pulmonary edema (HAPE), but there are limited data in this young population. We, therefore, assessed in 118 nonacclimatized healthy children and adolescents (mean ± SD; age: 11 ± 2 yr) the effects of rapid ascent to high altitude on pulmonary artery pressure and right and left ventricular function by echocardiography. Pulmonary artery pressure was estimated by measuring the systolic right ventricular to right atrial pressure gradient. The echocardiography was performed at low altitude and 40 h after rapid ascent to 3,450 m. Pulmonary artery pressure was more than twofold higher at high than at low altitude (35 ± 11 vs. 16 ± 3 mmHg; P < 0.0001), and there existed a wide variability of pulmonary artery pressure at high altitude with an estimated upper 95% limit of 52 mmHg. Moreover, pulmonary artery pressure and its altitude-induced increase were inversely related to age, resulting in an almost twofold larger increase in the 6- to 9- than in the 14- to 16-yr-old participants (24 ± 12 vs. 13 ± 8 mmHg; P = 0.004). Even in children with the most severe altitude-induced pulmonary hypertension, right ventricular systolic function did not decrease, but increased, and none of the children developed HAPE. HAPE appears to be a rare event in this young population after rapid ascent to this altitude at which major tourist destinations are located.
Resumo:
BACKGROUND: The Contegra® is a conduit made from the bovine jugular vein and then interposed between the right ventricle and the pulmonary artery. It is used for cardiac malformations in the reconstruction of right ventricular outflow tract. OBJECTIVE: To describe both normal and pathological appearances of the Contegra® in radiological imaging, to describe imaging of complications and to define the role of CT and MRI in postoperative follow-up. MATERIALS AND METHODS: Forty-three examinations of 24 patients (17 boys and 7 girls; mean age: 10.8 years old) with Contegra® conduits were reviewed. Anatomical description and measurements of the conduits were performed. Pathological items examined included stenosis, dilatation, plicature or twist, thrombus or vegetations, calcifications and valvular regurgitation. Findings were correlated to the echographic gradient through the conduit when available. RESULTS: CT and MR work-up showed Contegra® stenosis (n = 12), dilatation (n = 9) and plicature or twist (n = 7). CT displayed thrombus or vegetations in the Contegra® in three clinically infected patients. Calcifications of the conduit were present at CT in 12 patients and valvular regurgitation in three patients. The comparison between CT and/or MR results showed a good correlation between the echographic gradient and the presence of stenosis in the Contegra®. CONCLUSION: CT and MR bring additional information about permeability and postoperative anatomy especially when echocardiography is inconclusive. Both techniques depict the normal appearance of the conduit, and allow comparison and precise evaluation of changes in the postoperative follow-up.
Resumo:
Background: Cardiac computed tomographic scans, coronary angiograms, and aortographies are routinely performed in transcatheter heart valve therapies. Consequently, all patients are exposed to multiple contrast injections with a following risk of nephrotoxicity and postoperative renal failure. The transapical aortic valve implantation without angiography can prevent contrast-related complications. Methods: Between November 2008 and November 2009, 30 consecutive high-risk patients (16 female, 53.3%) underwent transapical aortic valve implantation without angiography. The landmarks identification, the stent-valve positioning, and the postoperative control were routinely performed under transesophageal echocardiogram and fluoroscopic visualization without contrast injections. Results: Mean age was 80.1 +/- 8.7 years. Mean valve gradient, aortic orifice area, and ejection fraction were 60.3 +/- 20.9 mm Hg, 0.7 +/- 0.16 cm(2), and 0.526 +/- 0.128, respectively. Risk factors were pulmonary hypertension (60%), peripheral vascular disease (70%), chronic pulmonary disease (50%), previous cardiac surgery (13.3%), and chronic renal insufficiency (40%) (mean blood creatinine and urea levels: 96.8 +/- 54 mu g/dL and 8.45 +/- 5.15 mmol/L). Average European System for Cardiac Operative Risk Evaluation was 32.2 +/- 13.3%. Valve deployment in the ideal landing zone was 96.7% successful and valve embolization occurred once. Thirty-day mortality was 10% (3 patients). Causes of death were the following: intraoperative ventricular rupture (conversion to sternotomy), right ventricular failure, and bilateral pneumonia. Stroke occurred in one patient at postoperative day 9. Renal failure (postoperative mean blood creatinine and urea levels: 91.1 +/- 66.8 mu g/dL and 7.27 +/- 3.45 mmol/L), myocardial infarction, and atrioventricular block were not detected. Conclusions: Transapical aortic valve implantation without angiography requires a short learning curve and can be performed routinely by experienced teams. Our report confirms that this procedure is feasible and safe, and provides good results with low incidence of postoperative renal disorders. (Ann Thorac Surg 2010; 89: 1925-33) (C) 2010 by The Society of Thoracic Surgeons
Resumo:
Résumé Le mammifère adulte possède des capacités de régénération tissulaire beaucoup plus limitées que celles des mammifères à l'âge foetal, ou d'autres vertébrés adultes comme les amphibiens urodèles et anuriens. Le mode de réparation tissulaire généralement utilisé par le mammifère adulte est la cicatrisation. Celle-ci suit un déroulement physio-pathologique très reproductible, qui a été le mieux décrit dans la peau, mais est également applicable à d'autres tissus comme le coeur en cas d'infarctus. Toutefois, le coeur de mammifère adulte semble posséder un certain potentiel régénérateur, bien qu'insuffisant pour réparer une lésion d'infarctus; en particulier, il contient des populations de cellules exprimant des marqueurs de surface des cellules souches hématopoiétiques comme l'antigène de cellules souches (stem cell antigen; Sca-1) ou le récepteur pour le facteur de cellules souches (stem cell factor; SCF), c-kit. Le comportement de ces cellules ressemble à de nombreux égards à celui de cellules souches adultes résidentes. D'autre part, un modèle mammifère adulte de régénération tissulaire, la souris NIRL, a été décrit ,récemment ; si cette souris répare. l'infarctus ischémique du ventricule gauche par cicatrisation, elle est par contre capable de régénérer complètement le myocarde après cryoinfarctus du ventricule droit, sans former la moindre cicatrice. Le but de cette thèse a été l'exploration par différentes approches des potentiels régénérateurs cardiaques après infarctus chez le mammifère adulte. La première approche choisie a été l'étude de la régénération myocardique chez la souris MRL. Il s'agissait de comprendre pourquoi la souris MRL régénère le coeur après cryoinfarctus du ventricule droit, et pas après infarctus ischémique du ventricule gauche, ainsi que d'élucider les mécanismes à la base de la régénération cardiaque chez cette souris. En utilisant le protocole original d'infarctus cryogénique du ventricule droit, nous n'avons pas observé de régénération cardiaque chez la souris MRL, qui a réparé l'infarctus par cicatrisation.- Nous avons ensuite modifié la sévérité du stimulus cryogénique, la localisation de la lésion cardiaque, et le type de lésion lui-même (infarctus ischémique induit par ligature coronarienne). En théorie, ces aspects expérimentaux sont les principaux facteurs pouvant influencer la réparation tissulaire. En utilisant cinq protocoles expérimentaux différents, nous n'avons pas observé de régénération cardiaque chez la souris MRL. Nous avons également analysé la prolifération cellulaire dans trois régions différentes du coeur à 15 et 40 jours après infarctus, et n'avons pas observé de différence entre la souris MRL et la souris contrôle C57B1/6. Quant à la composition en collagène de la cicatrice, elle est la même chez les deux souches de souris. Nos résultats ne peuvent donc pas confirmer la validité de ce modèle marin de régénération cardiaque récemment publié. Nous nous sommes alors tournés vers une deuxième approche d'étude du potentiel régénérateur du coeur de mammifère adulte, celle des cellules souches adultes résidentes. Nous avons isolé et purifié la population de cellules cardiaques qui expriment le marqueur de surface Sca-1 ;nous les avons maintenues en cultures pendant plusieurs dizaines de passages, et les avons ré-injectées dans le myocarde. Cette deuxième approche .ouvre la voie à l'étude de cellules souches cardiaques adultes candidates, ainsi qu'à la thérapie cellulaire de l'infarctus du myocarde. Summary Adult mammals possess limited tissue regeneration capacities as compared to foetal mammals or other adult vertebrates such as anurian and urodele amphibians. Usually, adult mammals heal tissues by scarring. The process of scarring is characterized by physiopathological events which have been best studied in skin; but which also occur in other organs like the heart. Nevertheless, the adult mammalian heart seems to possess a certain regenerative potential, though insufficient to efficiently repair infarct lesions. It indeed contains cell populations expressing haematopoietic stem cell surface markers such as Scat or c-kit. These cells behave in many ways like resident adult. stem cells. On the other hand; an adult mammalian model of tissue regeneration, the MRL mouse, has been recently described; although this mouse repairs an ischemic infarct of the left ventricle by scarring, it is able of fully regenerating a cryoinfarction of the right ventricle without scanning . The goal of this thesis was to explore the regenerative potential of the adult mammalian heart after infarction by using different approaches. A first approach was to study the myocardial regeneration in the MRL mouse. It was about understanding why this mouse regenerates a right ventricular cryoinfarction and not an ischemic infarction of the left ventricle, as well as elucidating the mechanisms underlying myocardial regeneration in this model. By using the original protocol of right ventricular cryoinfarction, we did not observe any heart regeneration in the MRL mouse, which healed the infarct by scarring. We then modified the intensity of the cryogenic stimulus, the site of lesion, and -the type of lesion itself (ischemic infarction by coronary artery ligation). In theory, these experimental aspects are the main factors likely to influence tissue repair. Although. we used five different protocols, we did not observe any regeneration in the MRL mouse. We also analysed cell proliferation in three different regions of the heart, at 15 and 40 days after infarction, and did not see any difference between the MRL and C57B1/6 mouse. Collagen content of the scar was shown to be the same in both strains. Our results cannot confirm the validity of this recently published model. We then chose another way to study the adult mammalian heart regenerative potential, by taking the adult resident stem cells approach. We isolated and purified a cardiac cell population expressing the Sca-1 surface marker; we kept these cells in culture for over 30 passages, and re-injected them into the myocardium. This second approach opens the way to candidate adult cardiac stem cell study, as well as cell therapy.
Resumo:
BACKGROUND: We assessed end-diastolic right ventricular (RV) dimensions and left ventricular (LV) ejection fraction by use of intraoperative transesophageal echocardiography before and after surgical correction of pectus excavatum in adults. METHODS: A prospective study was conducted including 17 patients undergoing surgical correction of pectus excavatum according to the technique of Ravitch-Shamberger between 1999 and 2004. Intraoperative transesophageal echocardiography was performed under general anesthesia before and after surgery to assess end-diastolic RV dimensions and LV ejection fraction. The end-diastolic RV diameter and area were measured in four-chamber and RV inflow-outflow view, and the RV volume was calculated from these data. The LV was assessed by transgastric short-axis view, and its ejection fraction was calculated by use of the Teichholz formula. RESULTS: The end-diastolic RV diameter, area, and volume all significantly increased after surgery (mean values +/- SD, respectively: 2.4 +/- 0.8 cm versus 3.0 +/- 0.9 cm, p < 0.001; 12.5 +/- 5.2 cm(2) versus 18.4 +/- 7.5 cm(2), p < 0.001; and 21.7 +/- 11.7 mL versus 40.8 +/- 23 mL, p < 0.001). The LV ejection fraction also significantly increased after surgery (58.4% +/- 15% versus 66.2% +/- 6%, p < 0.001). CONCLUSIONS: Surgical correction of pectus excavatum according to Ravitch-Shamberger technique results in a significant increase in end-diastolic RV dimensions and a significantly increased LV ejection fraction.
Resumo:
Background. We assessed end-diastolic right ventricular (RV) dimensions and left ventricular (LV) ejection fraction by use of intraoperative transesophageal echocardiography before and after surgical correction of pectus excavatum in adults. Methods. A prospective study was conducted including 17 patients undergoing surgical correction of pectus excavatum according to the technique of Ravitch-Shamberger between 1999 and 2004. Intraoperative transesophageal echocardiography was performed under general anesthesia before and after surgery to assess end-diastolic RV dimensions and LV ejection fraction. The end-diastolic RV diameter and area were measured in four-chamber and RV inflow-outflow view, and the RV volume was calculated from these data. The LV was assessed by transgastric short-axis view, and its ejection fraction was calculated by use of the Teichholz formula. Results. The end-diastolic RV diameter, area, and volume all significantly increased after surgery (mean values +/- SD, respectively: 2.4 +/- 0.8 cm versus 3.0 +/- 0.9 cm, p < 0.001; 12.5 +/- 5.2 cm(2) versus 18.4 +/- 7.5 cm(2), p < 0.001; and 21.7 +/- 11.7 mL versus 40.8 +/- 23 mL, p < 0.001). The LV ejection fraction also significantly increased after surgery (58.4% +/- 15% versus 66.2% +/- 6%, p < 0.001). Conclusions. Surgical correction of pectus excavatum according to Ravitch-Shamberger technique results in a significant increase in end-diastolic RV dimensions and a significantly increased LV ejection fraction. (Ann Thorac Surg 2010; 89: 240-4) (C) 2010 by The Society of Thoracic Surgeons
Resumo:
OBJECTIVES: The aim of this study was to evaluate right ventricular (RV) and left ventricular function and pulmonary circulation in chronic mountain sickness (CMS) patients with rest and stress echocardiography compared with healthy high-altitude (HA) dwellers. BACKGROUND: CMS or Monge's disease is defined by excessive erythrocytosis (hemoglobin >21 g/dl in males, 19 g/dl in females) and severe hypoxemia. In some cases, a moderate or severe increase in pulmonary pressure is present, suggesting a similar pathogenesis of pulmonary hypertension. METHODS: In La Paz (Bolivia, 3,600 m sea level), 46 CMS patients and 40 HA dwellers of similar age were evaluated at rest and during semisupine bicycle exercise. Pulmonary artery pressure (PAP), pulmonary vascular resistance, and cardiac function were estimated by Doppler echocardiography. RESULTS: Compared with HA dwellers, CMS patients showed RV dilation at rest (RV mid diameter: 36 ± 5 mm vs. 32 ± 4 mm, CMS vs. HA, p = 0.001) and reduced RV fractional area change both at rest (35 ± 9% vs. 43 ± 9%, p = 0.002) and during exercise (36 ± 9% vs. 43 ± 8%, CMS vs. HA, p = 0.005). The RV systolic longitudinal function (RV-S') decreased in CMS patients, whereas it increased in the control patients (p < 0.0001) at peak stress. The RV end-systolic pressure-area relationship, a load independent surrogate of RV contractility, was similar in CMS patients and HA dwellers with a significant increase in systolic PAP and pulmonary vascular resistance in CMS patients (systolic PAP: 50 ± 12 mm Hg vs. 38 ± 8 mm Hg, CMS vs. HA, p < 0.0001; pulmonary vascular resistance: 2.9 ± 1 mm Hg/min/l vs. 2.2 ± 1 mm Hg/min/l, p = 0.03). Both groups showed comparable systolic and diastolic left ventricular function both at rest and during stress. CONCLUSIONS: Comparable RV contractile reserve in CMS and HA suggests that the lower resting values of RV function in CMS may represent a physiological adaptation to chronic hypoxic conditions rather than impaired RV function. (Chronic Mountain Sickness, Systemic Vascular Function [CMS]; NCT01182792).
Resumo:
OBJECTIVES: Pulmonary valve insufficiency remains a leading cause for reoperations in congenital cardiac surgery. The current percutaneous approach is limited by the size of the access vessel and variable right ventricular outflow tract morphology. This study assesses the feasibility of transapical pulmonary valve replacement based on a new valved stent construction concept. METHODS: A new valved stent design was implanted off-pump under continuous intracardiac echocardiographic and fluoroscopic guidance into the native right ventricular outflow tract in 8 pigs (48.5 +/- 6.0 kg) through the right ventricular apex, and device function was studied by using invasive and noninvasive measures. RESULTS: Procedural success was 100% at the first attempt. Procedural time was 75 +/- 15 minutes. All devices were delivered at the target site with good acute valve function. No valved stents dislodged. No animal had significant regurgitation or paravalvular leaking on intracardiac echocardiographic analysis. All animals had a competent tricuspid valve and no signs of right ventricular dysfunction. The planimetric valve orifice was 2.85 +/- 0.32 cm(2). No damage to the pulmonary artery or structural defect of the valved stents was found at necropsy. CONCLUSIONS: This study confirms the feasibility of direct access valve replacement through the transapical procedure for replacement of the pulmonary valve, as well as validity of the new valved stent design concept. The transapical procedure is targeting a broader patient pool, including the very young and the adult patient. The device design might not be restricted to failing conduits only and could allow for implantation in a larger patient population, including those with native right ventricular outflow tract configurations.
Resumo:
BACKGROUND: Whether the oral factor Xa inhibitor edoxaban can be an alternative to warfarin in patients with venous thromboembolism is unclear. METHODS: In a randomized, double-blind, noninferiority study, we randomly assigned patients with acute venous thromboembolism, who had initially received heparin, to receive edoxaban at a dose of 60 mg once daily, or 30 mg once daily (e.g., in the case of patients with creatinine clearance of 30 to 50 ml per minute or a body weight below 60 kg), or to receive warfarin. Patients received the study drug for 3 to 12 months. The primary efficacy outcome was recurrent symptomatic venous thromboembolism. The principal safety outcome was major or clinically relevant nonmajor bleeding. RESULTS: A total of 4921 patients presented with deep-vein thrombosis, and 3319 with a pulmonary embolism. Among patients receiving warfarin, the time in the therapeutic range was 63.5%. Edoxaban was noninferior to warfarin with respect to the primary efficacy outcome, which occurred in 130 patients in the edoxaban group (3.2%) and 146 patients in the warfarin group (3.5%) (hazard ratio, 0.89; 95% confidence interval [CI], 0.70 to 1.13; P<0.001 for noninferiority). The safety outcome occurred in 349 patients (8.5%) in the edoxaban group and 423 patients (10.3%) in the warfarin group (hazard ratio, 0.81; 95% CI, 0.71 to 0.94; P=0.004 for superiority). The rates of other adverse events were similar in the two groups. A total of 938 patients with pulmonary embolism had right ventricular dysfunction, as assessed by measurement of N-terminal pro-brain natriuretic peptide levels; the rate of recurrent venous thromboembolism in this subgroup was 3.3% in the edoxaban group and 6.2% in the warfarin group (hazard ratio, 0.52; 95% CI, 0.28 to 0.98). CONCLUSIONS: Edoxaban administered once daily after initial treatment with heparin was noninferior to high-quality standard therapy and caused significantly less bleeding in a broad spectrum of patients with venous thromboembolism, including those with severe pulmonary embolism. (Funded by Daiichi-Sankyo; Hokusai-VTE ClinicalTrials.gov number, NCT00986154.).
Resumo:
Acute pulmonary embolism (PE) is a common condition frequently associated with a high mortality worldwide. It can be classified into non-massive, sub-massive and massive, based on the degree of haemodynamic compromise. Surgical pulmonary embolectomy, despite having been in existence for over 100 years, is generally regarded as an option of last resort, with expectedly high mortality rates. Recent advances in diagnosis and recognition of key qualitative predictors of mortality, such as right ventricular stress on echocardiography, have enabled the re-exploration of surgical pulmonary embolectomy for use in patients prior to the development of significant circulatory collapse, with promising results. We aim to review the literature and discuss the indications, perioperative workup and outcomes of surgical pulmonary embolectomy in the management of acute PE.