76 resultados para Archival organization
Resumo:
Pre-Variscan basement elements of Central Europe appear in polymetamorphic domains juxtaposed through Variscan and/or Alpine tectonic events. Consequently, nomenclatures and zonations applied to Variscan and Alpine structures, respectively, cannot be valid for pre-Variscan structures. Comparing pre-Variscan relics hidden in the Variscan basement areas of Central Europe, the Alps included, large parallels between the evolution of basement areas of future Avalonia and its former peri-Gondwanan eastern prolongations (e.g. Cadomia, Intra-Alpine Terrane) become evident. Their plate-tectonic evolution from the Late Proterozoic to the Late Ordovician is interpreted as a continuous Gondwana-directed evolution. Cadomian basement, late Cadomian granitoids, late Proterozoic detrital sediments and active margin settings characterize the pre-Cambrian evolution of most of the Gondwana-derived microcontinental pieces. Also the Rheic ocean, separating Avalonia from Gondwana, should have had, at its early stages, a lateral continuation in the former eastern prolongation of peri-Gondwanan microcontinents (e.g. Cadomia, Intra-Alpine Terrane). Subduction of oceanic ridge (Proto-Tethys) triggered the break-off of Avalonia, whereas in the eastern prolongation, the presence of the ridge may have triggered the amalgamation of volcanic arcs and continental ribbons with Gondwana (Ordovician orogenic event). Renewed Gondwana-directed subduction led to the opening of Palaeo-Tethys.
Resumo:
Indirect evidence from trapping suggests that Crocidura russula is less solitary and territorial than other shrews. To study the social organization and mating system, free-ranging adult and juvenile C. russula were tracked simultaneously throughout the year using a radioactive tracking technique. Coincident rest, coincident activity and home range overlap were measured. During winter, all individuals used the same communal nest and spent on average 84% of their total rest in coincident rest. This led to a large home range overlap (52% on average). Coincident activity was low (2% on average). At the onset of the reproductive season the females became, territorial and shared their nest with only one male. During pair formation, coincident activity and home range overlap were significantly greater between than within sexes. The social organization of C. russula appeared to be strongly influenced by season and differed in this respect from the other species in the genus Sorex which are territorial throughout the year.
Resumo:
Functional specialization is tightly linked to the ability of eukaryotic cells to acquire a particular shape. Cell morphogenesis, in turn, relies on the capacity to establish and maintain cell "polarity", which is achieved by orienting the trafficking of signaling molecules and organelles towards specific cellular locations and/or membrane domains. The "oriented" transport is based upon cytoskeletal polymers, microtubules and actin filaments, which serve as tracks for molecular motors. These latter generate motion that is translated either into pulling forces or directed transport. Fission yeast, a rod-like unicellular eukaryote, shapes itself by restricting growth at cell tips through the concerted activity of microtubules and actin cables. Microtubules, which assemble into 2-6 bundles and run parallel to the long axis of the cell, serve to orient growth to the tips. Growth is supported by the actin cytoskeleton, which provides tracks, the cables, for motor-based transport of secretory vesicles. The molecular motors, which bind cargos and deliver them to the tips along cables, are also known as type V myosins (hereafter indicated as myosin V). How the bundles of parallel actin filaments, i.e. the cables, extend from the tips through the cell and whether they serve any other purpose, besides providing tracks, is poorly understood. It is also unclear how the crosstalk between the two cytoskeletal systems is achieved. These are the basic questions I addressed during my PhD. The first part of the thesis work (Chapter two) suggests that the sole function of actin cables in polarized growth is to serve as tracks for motors. The data indicate that cells may have evolved two cytoskeletal systems to provide robustness to the polarization process but in principle a unique cytoskeleton might have been able to direct and support polarized growth. How actin cables are organized within the cell to optimize cargo transport is addressed later on (Chapter three). The major finding, based on the actin cable defect of cells lacking myosin Vs, is that actin filaments self-organize through the activity of the transport motors. In fact, by delivering cargos to cell tips and exerting physical pulling forces on actin filaments, Myosin Vs contribute not only to polarize cargo transport but also actin tracks. Among the cargos transported by Myosin V, which may be relevant to its function in organizing cables, there is likely the endoplasmic reticulum (ER). Actin cables, which run parallel to cortical ER, may serve as tracks for Myosin V. Myosin V-driven displacement, in turn, may account for the dynamic expansion and organization of ER during polarized growth as suggested in Chapter four. The last part of the work (Chapter five) highlights the existence of a crosstalk between actin and microtubules. In absence of myosin V, indeed, microtubules contribute to actin cable organization, likely playing a scaffolding/tethering function. Whether or not the kinesin 1, Klp3, plays any role in such process has to be demonstrated. In conclusion the work proposes a novel role for myosin Vs in actin organization, besides its transport function, and provides molecular tools to further dissect the role of this type of myosin in fission yeast. - La spécialisation fonctionnelle est étroitement connectée à la capacité des cellules eucaryotes d'acquérir une forme particulière. La morphogenèse cellulaire à son tour, est basée sur la capacité d'établir et de maintenir la polarité cellulaire, polarité réalisée en orientant le trafic des molécules signales et des organelles vers des zones cellulaires spécifiques. Ce transport directionnel dépend des polymères du cytosquelette, microtubules et microfilaments, qui servent comme des voies pour les moteurs moléculaires. Ces derniers engendrent du mouvement, traduit soit en force de traction soit en transport directionnel. La levure fissipare, un eucaryote unicellulaire en forme de bâtonnet, acquière sa forme en limitant sa croissance aux extrémités par l'action concertée des microtubules et de l'actine. Les microtubules, qui s'assemblent de façon antiparallèle et parcourent la cellule parallèlement à l'axe longitudinal, servent à orienter la croissance aux extrémités. Cette croissance est permise par le cytosquelette d'actine, fournissant des voies, les câbles, pour le transport actif des vésicules de sécrétion. Les moteurs moléculaires, responsables de ce transport actif sont aussi appelés myosines de type V (par la suite appelés myosines V). La manière dont ces câbles s'étendent depuis l'extrémité jusqu'à l'intérieur de la cellule est peu connue. De plus, on ignore également si ces câbles présentent une fonction autre que le transport. L'interaction entre les deux cytosquelettes est également obscure. Ce sont ces questions de base auxquelles j'ai tenté de répondre lors de ma thèse. La première partie de cette thèse (chapitre II) suggère que les câbles d'actine, pendant la croissance polarisée, fonctionnent uniquement comme des voies pour les moteurs moléculaires. Les données indiqueraient que les cellules ont fait évoluer deux systèmes de cytosquelette pour assurer plus de robustesse au processus de polarisation, bien que, comme nous le verrons, un système unique est suffisant. Au chapitre III, nous verrons comment les câbles d'actine sont organisés à l'intérieur de la cellule afin d'optimiser le transport des cargo. La découverte majeure, réalisée en observant des cellules dont la myosine V fait défaut, est que ces filaments d'actine s'auto organisent grâce au passage des moteurs moléculaires le long de ces voies. En réalité, en délivrant les cargos aux extrémités de la cellule et en exerçant des forces de traction sur les câbles, les myosines V contribuent non seulement à polariser le transport mais également à polariser les voies elles mêmes. Nous verrons également au chapitre IV, que parmi les cargos importants pour l'organisation des câbles, il y aurait le réticulum endoplasmique (RE). En effet, les câbles d'actine, qui s'étalent parallèlement au RE cortical, pourraient servir comme voie pour la myosine V. Cette dernière en retour pourrait être responsable de l'expansion dynamique et de l'organisation du RE pendant la croissance polarisée.
Resumo:
The visual cortex in each hemisphere is linked to the opposite hemisphere by axonal projections that pass through the splenium of the corpus callosum. Visual-callosal connections in humans and macaques are found along the V1/V2 border where the vertical meridian is represented. Here we identify the topography of V1 vertical midline projections through the splenium within six human subjects with normal vision using diffusion-weighted MR imaging and probabilistic diffusion tractography. Tractography seed points within the splenium were classified according to their estimated connectivity profiles to topographic subregions of V1, as defined by functional retinotopic mapping. First, we report a ventral-dorsal mapping within the splenium with fibers from ventral V1 (representing the upper visual field) projecting to the inferior-anterior corner of the splenium and fibers from dorsal V1 (representing the lower visual field) projecting to the superior-posterior end. Second, we also report an eccentricity gradient of projections from foveal-to-peripheral V1 subregions running in the anterior-superior to posterior-inferior direction, orthogonal to the dorsal-ventral mapping. These results confirm and add to a previous diffusion MRI study (Dougherty et al., 2005) which identified a dorsal/ventral mapping of human splenial fibers. These findings yield a more detailed view of the structural organization of the splenium than previously reported and offer new opportunities to study structural plasticity in the visual system.
Resumo:
The aim of this study was to investigate levels of expression of two major genes, the odorant binding protein Gp-9 (general protein-9) and foraging, that have been shown to be associated with behavioural polymorphisms in ants. We analysed workers and young nonreproductive queens collected from nests of the monogyne (single reproductive queen per nest) and polygyne (multiple reproductive queens) social forms of Solenopsis invicta. In workers but not young queens, the level of foraging expression was significantly associated with social form and the task performed (ie localization in the nest or foraging area). The level of expression of Gp-9 was also associated with social form and worker localization. In addition there was a higher level of expression of the Gp-9(b) allele compared with the Gp-9(B) allele in the heterozygote workers and the young nonreproductive queens. Finally, in the polygyne colonies the level of expression of foraging was not significantly associated with the Gp-9 genotype for either workers or young nonreproductive queens, suggesting that both genes have independent non-epistatic effects on behaviour in S. invicta.
Resumo:
BACKGROUND: Strict definition of invasive aspergillosis (IA) cases is required to allow precise conclusions about the efficacy of antifungal therapy. The Global Comparative Aspergillus Study (GCAS) compared voriconazole to amphotericin B (AmB) deoxycholate for the primary therapy of IA. Because predefined definitions used for this trial were substantially different from the consensus definitions proposed by the European Organization for Research and Treatment of Cancer/Mycoses Study Group in 2008, we recategorized the 379 episodes of the GCAS according to the later definitions. METHODS: The objectives were to assess the impact of the current definitions on the classification of the episodes and to provide comparative efficacy for probable/proven and possible IA in patients treated with either voriconazole or AmB. In addition to original data, we integrated the results of baseline galactomannan serum levels obtained from 249 (65.7%) frozen samples. The original response assessment was accepted unchanged. RESULTS: Recategorization allowed 59 proven, 178 probable, and 106 possible IA cases to be identified. A higher favorable 12-week response rate was obtained with voriconazole (54.7%) than with AmB (29.9%) (P < .0001). Survival was higher for voriconazole for mycologically documented (probable/proven) IA (70.2%) than with AmB (54.9%) (P = .010). Higher response rates were obtained in possible IA treated with voriconazole vs AmB with the same magnitude of difference (26.2%; 95% confidence interval [CI], 7.2%-45.3%) as in mycologically documented episodes (24.3%; 95% CI, 11.9%-36.7%), suggesting that possible cases are true IA. CONCLUSIONS: Recategorization resulted in a better identification of the episodes and confirmed the higher efficacy of voriconazole over AmB deoxycholate in mycologically documented IA.
Resumo:
Identifying species exhibiting variation in social organization is an important step towards explaining the genetic and environmental factors underlying social evolution. In most studied populations of the ant Leptothorax acervorum, reproduction is shared among queens in multiple queen colonies (polygyny). By contrast, reports from other populations, but based on weaker evidence, suggest a single queen may monopolize all reproduction in multiple queen colonies (functional monogyny). Here we identify a marked polymorphism in social organization in this species, by conclusively showing that functional monogyny is exhibited in a Spanish population, showing that the social organization is stable and not purely a consequence of daughter queens overwintering, that daughter queen re-adoption is frequent and queen turnover is low. Importantly, we show that polygynous and functionally monogynous populations are not genetically distinct from one another based on mtDNA and nDNA. This suggests a recent evolutionary divergence between social phenotypes. Finally, when functionally monogynous and polygynous colonies were kept under identical laboratory conditions, social organization did not change, suggesting a genetic basis for the polymorphism. We discuss the implications of these findings to the study of reproductive skew.
Resumo:
The human primary auditory cortex (AI) is surrounded by several other auditory areas, which can be identified by cyto-, myelo- and chemoarchitectonic criteria. We report here on the pattern of calcium-binding protein immunoreactivity within these areas. The supratemporal regions of four normal human brains (eight hemispheres) were processed histologically, and serial sections were stained for parvalbumin, calretinin or calbindin. Each calcium-binding protein yielded a specific pattern of labelling, which differed between auditory areas. In AI, defined as area TC [see C. von Economo and L. Horn (1930) Z. Ges. Neurol. Psychiatr.,130, 678-757], parvalbumin labelling was dark in layer IV; several parvalbumin-positive multipolar neurons were distributed in layers III and IV. Calbindin yielded dark labelling in layers I-III and V; it revealed numerous multipolar and pyramidal neurons in layers II and III. Calretinin labelling was lighter than that of parvalbumin or calbindin in AI; calretinin-positive bipolar and bitufted neurons were present in supragranular layers. In non-primary auditory areas, the intensity of labelling tended to become progressively lighter while moving away from AI, with qualitative differences between the cytoarchitectonically defined areas. In analogy to non-human primates, our results suggest differences in intrinsic organization between auditory areas that are compatible with parallel and hierarchical processing of auditory information.
Resumo:
The very diverse social systems of sweat bees make them interesting models to study social evolution. Here we focus on the dispersal behaviour and social organization of Halictus scabiosae, a common yet poorly known species of Europe. By combining field observations and genetic data, we show that females have multiple reproductive strategies, which generates a large diversity in the social structure of nests. A detailed microsatellite analysis of 60 nests revealed that 55% of the nests contained the offspring of a single female, whereas the rest had more complex social structures, with three clear cases of multiple females reproducing in the same nest and frequent occurrence of unrelated individuals. Drifting among nests was surprisingly common, as 16% of the 122 nests in the overall sample and 44% of the nests with complex social structure contained females that had genotypes consistent with being full-sisters of females sampled in other nests of the population. Drifters originated from nests with an above-average productivity and were unrelated to their nestmates, suggesting that drifting might be a strategy to avoid competition among related females. The sex-specific comparison of genetic differentiation indicated that dispersal was male-biased, which would reinforce local resource competition among females. The pattern of genetic differentiation among populations was consistent with a dynamic process of patch colonization and extinction, as expected from the unstable, anthropogenic habitat of this species. Overall, our data show that H. scabiosae varies greatly in dispersal behaviour and social organization. The surprisingly high frequency of drifters echoes recent findings in wasps and bees, calling for further investigation of the adaptive basis of drifting in the social insects.
Resumo:
Ants live in organized societies with a marked division of labor among workers, but little is known about how this division of labor is generated. We used a tracking system to continuously monitor individually tagged workers in six colonies of the ant Camponotus fellah over 41 days. Network analyses of more than 9 million interactions revealed three distinct groups that differ in behavioral repertoires. Each group represents a functional behavioral unit with workers moving from one group to the next as they age. The rate of interactions was much higher within groups than between groups. The precise information on spatial and temporal distribution of all individuals allowed us to calculate the expected rates of within- and between-group interactions. These values suggest that the network of interaction within colonies is primarily mediated by age-induced changes in the spatial location of workers.
Resumo:
Background. New recommendations for rabies postexposure prophylaxis (PEP) were published by the Centers for Disease Control and Prevention and the World Health Organization in 2010. In view of these new recommendations, we investigated the adequacy of rabies PEP among patients consulting our travel clinic. Methods. A retrospective analysis of the files of all patients who consulted for rabies PEP at the Travel Clinic of the University Hospital in Lausanne, Switzerland, between January 2005 and August 2011 was conducted. Results. A total of 110 patients who received rabies PEP were identified. The median age of the patients was 34 years (range, 2-79 years), and 53% were women. Ninety subjects were potentially exposed to rabies while travelling abroad. Shortcomings in the management of these patients were (1) late initiation of rabies PEP in travelers who waited to seek medical care until returning to Switzerland, (2) administration of human rabies immunoglobulin (HRIG) to only 7 of 50 travelers (14%) who sought care abroad and for whom HRIG was indicated, and (3) antibody levels <0.5 IU/mL in 6 of 90 patients (6.7%) after 4 doses of vaccine. Conclusions. Patients do not always receive optimal rabies PEP under real-life conditions. A significant proportion of patients did not develop adequate antibody levels after 4 doses of vaccine. These data indicate that the measurement of antibody levels on day 21 of the Essen PEP regimen is useful in order to verify an adequate immune response.
Review of Iedema Rick.Discourses of post-bureaucratic organization . Amsterdam : J. Benjamins, 2003.
Resumo:
Colony social organization in the fire ant Solenopsis invicta appears to be under strong genetic control. In the invasive USA range, polygyny (multiple queens per colony) is marked by the presence of the Gp-9(b) allele in most of a colony's workers, whereas monogyny (single queen per colony) is associated with the exclusive occurrence of the Gp-9(B) allele. Ross and Keller, Behav Ecol Sociobiol 51:287-295 (2002) experimentally manipulated social organization by cross-fostering queens into colonies of the alternate form, thereby changing adult worker Gp-9 genotype frequencies over time. Although these authors showed that social behavior switched predictably when the frequency of b-bearing adult workers crossed a threshold of 5-10%, the possibility that queen effects caused the conversions could not be excluded entirely. We addressed this problem by fostering polygyne brood into queenright monogyne colonies. All such treatment colonies switched social organization to become polygyne, coincident with their proportions of b-bearing workers exceeding 12%. Our results support the conclusion that polygyny in S. invicta is induced by a minimum frequency of colony workers carrying the b allele, and further confirm that its expression is independent of queen genotype or history, worker genotypes at genes not linked to Gp-9, and colony genetic diversity.
Resumo:
Defects in the interleukin-2 receptor gamma (IL-2R gamma) chain in the man result in an X-linked severe combined immunodeficiency, SCIDX1, characterized by an absence of T-cell differentiation. This phenotype may result from pertubations in IL-2, IL-4-, IL-7- or IL-15-mediated signaling, as the IL-2R gamma chain forms an integral component of these receptor systems. We have isolated and characterized cDNA and genomic clones for the murine IL-2R gamma. The gene (Il2rg) is well conserved between mouse and man with respect to overall structure and size, and contains regions of high conservation in the promoter region as well. Il2rg maps to mouse X chromosome region 40, in a region of synteny with human Xq12-13.1. We have also explored the expression of the IL-2R gamma during thymocyte development. IL-2R gamma transcripts are detected in the earliest thymocyte precursor cells and persist throughout intrathymic development into the mature peripheral compartment. Genomic clones for the murine IL-2R gamma will allow for further studies on the regulation and function of this gene in vivo.