133 resultados para Ant abundance
Resumo:
The evolutionary theory of ageing predicts that the timing of senescence has been primarily shaped by the extrinsic mortality rate, which causes selection intensity to decline over time. One difficulty in testing the evolutionary theory of ageing is that extrinsic mortality risk is often confounded with body size and fecundity, which may also directly affect lifespan. Social insects with a pronounced division of labour between worker castes provide a unique opportunity to study the direct effect of extrinsic mortality on the evolution of ageing rates independently of body size, reproductive effort and genetic configuration. In the weaver ant, Oecophylla smaragdina, the major (large) workers perform the risky tasks outside the nest, while the minor (small) workers stay within the highly protected arboreal nest. Hence, this pronounced division of labour is associated with high differences in extrinsic mortality risks. The evolutionary theory of ageing predicts that the minor workers should have a longer intrinsic lifespan than the major workers. In line with this prediction, we found that in a protected environment the minor workers lived significantly longer than the major workers did. Hence, the ageing rate appears to have been moulded by variation in the extrinsic mortality rate independently of size, reproductive effort and genetic configuration.
Resumo:
The ability to discriminate against competitors shapes cooperation and conflicts in all forms of social life. In insect societies, workers may detect and destroy eggs laid by other workers or by foreign queens, which can contribute to regulate reproductive conflicts among workers and queens. Variation in colony kin structure affects the magnitude of these conflicts and the diversity of cues used for discrimination, but the impact of the number of queens per colony on the ability of workers to discriminate between eggs of diverse origin has so far not been investigated. Here, we examined whether workers from the socially polymorphic ant Formica selysi distinguished eggs laid by nestmate workers from eggs laid by nestmate queens, as well as eggs laid by foreign queens from eggs laid by nestmate queens. Workers from single- and multiple-queen colonies discriminated worker-laid from queen-laid eggs, and eliminated the former. This suggests that workers collectively police each other in order to limit the colony-level costs of worker reproduction and not because of relatedness differences towards queens' and workers' sons. Workers from single-queen colonies discriminated eggs laid by foreign queens of the same social structure from eggs laid by nestmate queens. In contrast, workers from multiple-queen colonies did not make this distinction, possibly because cues on workers or eggs are more diverse. Overall, these data indicate that the ability of F. selysi workers to discriminate eggs is sufficient to restrain worker reproduction but does not permit discrimination between matrilines in multiple-queen colonies.
Resumo:
Research has demonstrated that landscape or watershed scale processes can influence instream aquatic ecosystems, in terms of the impacts of delivery of fine sediment, solutes and organic matter. Testing such impacts upon populations of organisms (i.e. at the catchment scale) has not proven straightforward and differences have emerged in the conclusions reached. This is: (1) partly because different studies have focused upon different scales of enquiry; but also (2) because the emphasis upon upstream land cover has rarely addressed the extent to which such land covers are hydrologically connected, and hence able to deliver diffuse pollution, to the drainage network However, there is a third issue. In order to develop suitable hydrological models, we need to conceptualise the process cascade. To do this, we need to know what matters to the organism being impacted by the hydrological system, such that we can identify which processes need to be modelled. Acquiring such knowledge is not easy, especially for organisms like fish that might occupy very different locations in the river over relatively short periods of time. However, and inevitably, hydrological modellers have started by building up piecemeal the aspects of the problem that we think matter to fish. Herein, we report two developments: (a) for the case of sediment associated diffuse pollution from agriculture, a risk-based modelling framework, SCIMAP, has been developed, which is distinct because it has an explicit focus upon hydrological connectivity; and (b) we use spatially distributed ecological data to infer the processes and the associated process parameters that matter to salmonid fry. We apply the model to spatially distributed salmon and fry data from the River Eden, Cumbria, England. The analysis shows, quite surprisingly, that arable land covers are relatively unimportant as drivers of fry abundance. What matters most is intensive pasture, a land cover that could be associated with a number of stressors on salmonid fry (e.g. pesticides, fine sediment) and which allows us to identify a series of risky field locations, where this land cover is readily connected to the river system by overland flow. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The change over time in the fecundity and weight of queens was investigated in three monogynous, independent colony founding species,Lasius niger, Camponotus ligniperda andC. herculaneus, and two polygynous dependent colony founding species,Plagiolepis pygmaea andIridomyrmex humilis. Queens of the three species founding independently exhibited a similar pattern with a significant loss of weight between mating and the emergence of the first workers. In contrast, weights of queens of the species employing dependent colony founding remained more stable. Fecundity of queens founding independently increased slowly with time whereas fecundity of queens founding dependently reached the maximum level some weeks after the beginning of the first reproductive season. These results are discussed in relation to some differences in the life history (e.g., life-span) between queens utilizing independent and dependent colony founding.
Resumo:
The amount of nitrogen required to complete an insect's life cycle may vary greatly among species that have evolved distinct life history traits. Myrmecophilous caterpillars in the Lycaenidae family produce nitrogen-rich exudates from their dorsal glands to attract ants for protection, and this phenomenon has been postulated to shape the caterpillar's host-plant choice. Accordingly, it was postulated that evolution towards myrmecophily in Lycaenidae is correlated with the utilization of nitrogen-rich host plants. Although our results were consistent with the evolutionary shifts towards high-nutrient host plants serving as exaptation for the evolution of myrmecophily in lycaenids, the selection of nitrogen-rich host plants was not confined to lycaenids. Butterfly species in the nonmyrmecophilous family Pieridae also preferred nitrogen-rich host plants. Thus, we conclude that nitrogen is an overall important component in the caterpillar diet, independent of the level of myrmecophily, as nitrogen can enhance the overall insect fitness and survival. However, when nitrogen can be obtained through alternative means, as in socially parasitic lycaenid species feeding on ant brood, the selective pressure for maintaining the use of nutrient-rich host plants is relaxed, enabling the colonization of nitrogen-poor host plants.
Resumo:
BACKGROUND: Animal societies are diverse, ranging from small family-based groups to extraordinarily large social networks in which many unrelated individuals interact. At the extreme of this continuum, some ant species form unicolonial populations in which workers and queens can move among multiple interconnected nests without eliciting aggression. Although unicoloniality has been mostly studied in invasive ants, it also occurs in some native non-invasive species. Unicoloniality is commonly associated with very high queen number, which may result in levels of relatedness among nestmates being so low as to raise the question of the maintenance of altruism by kin selection in such systems. However, the actual relatedness among cooperating individuals critically depends on effective dispersal and the ensuing pattern of genetic structuring. In order to better understand the evolution of unicoloniality in native non-invasive ants, we investigated the fine-scale population genetic structure and gene flow in three unicolonial populations of the wood ant F. paralugubris. RESULTS: The analysis of geo-referenced microsatellite genotypes and mitochondrial haplotypes revealed the presence of cryptic clusters of genetically-differentiated nests in the three populations of F. paralugubris. Because of this spatial genetic heterogeneity, members of the same clusters were moderately but significantly related. The comparison of nuclear (microsatellite) and mitochondrial differentiation indicated that effective gene flow was male-biased in all populations. CONCLUSION: The three unicolonial populations exhibited male-biased and mostly local gene flow. The high number of queens per nest, exchanges among neighbouring nests and restricted long-distance gene flow resulted in large clusters of genetically similar nests. The positive relatedness among clustermates suggests that kin selection may still contribute to the maintenance of altruism in unicolonial populations if competition occurs among clusters.
Resumo:
Division of labor is central to the organization of insect societies. Within-colony comparisons between subfamilies of workers (patrilines or matrilines) revealed genetic effects on division of labor in many social insect species. Although this has been taken as evidence for additive genetic effects on division of labor, it has never been experimentally tested. To determine the relative roles of additive and nonadditive genetic effects (e.g., genetic compatibility, epistasis, and parent-of-origin imprinting effects) on worker behavior, we performed controlled crosses using the Argentine ant Linepithema humile. Three of the measured behaviors (the efficiency to collect pupae, the foraging propensity, and the distance between non-brood-tenders and brood) were affected by the maternal genetic background and the two others (the efficiency to feed larvae and the distance between brood-tenders and brood) by the paternal genetic background. Moreover, there were significant interactions between the maternal and paternal genetic backgrounds for three of the five behaviors. These results are most consistent with parent-of-origin and genetic compatibility effects on division of labor. The finding of nonadditive genetic effects is in strong contrast with the current view and has important consequences for our understanding of division of labor in insect societies.
Resumo:
Males in many animal species differ greatly from females in morphology, physiology and behaviour. Ants, bees and wasps have a haplodiploid mechanism of sex determination whereby unfertilized eggs become males while fertilized eggs become females. However, many species also have a low frequency of diploid males, which are thought to develop from diploid eggs when individuals are homozygous at one or more sex determination loci. Diploid males are morphologically similar to haploids, though often larger and typically sterile. To determine how ploidy level and sex-locus genotype affect gene expression during development, we compared expression patterns between diploid males, haploid males and females (queens) at three developmental timepoints in Solenopsis invicta. In pupae, gene expression profiles of diploid males were very different from those of haploid males but nearly identical to those of queens. An unexpected shift in expression patterns emerged soon after adult eclosion, with diploid male patterns diverging from those of queens to resemble those of haploid males, a pattern retained in older adults. The finding that ploidy level effects on early gene expression override sex effects (including genes implicated in sperm production and pheromone production/perception) may explain diploid male sterility and lack of worker discrimination against them during development.
Resumo:
Question Does a land-use variable improve spatial predictions of plant species presence-absence and abundance models at the regional scale in a mountain landscape? Location Western Swiss Alps. Methods Presence-absence generalized linear models (GLM) and abundance ordinal logistic regression models (LRM) were fitted to data on 78 mountain plant species, with topo-climatic and/or land-use variables available at a 25-m resolution. The additional contribution of land use when added to topo-climatic models was evaluated by: (1) assessing the changes in model fit and (2) predictive power, (3) partitioning the deviance respectively explained by the topo-climatic variables and the land-use variable through variation partitioning, and (5) comparing spatial projections. Results Land use significantly improved the fit of presence-absence models but not their predictive power. In contrast, land use significantly improved both the fit and predictive power of abundance models. Variation partitioning also showed that the individual contribution of land use to the deviance explained by presence-absence models was, on average, weak for both GLM and LRM (3.7% and 4.5%, respectively), but changes in spatial projections could nevertheless be important for some species. Conclusions In this mountain area and at our regional scale, land use is important for predicting abundance, but not presence-absence. The importance of adding land-use information depends on the species considered. Even without a marked effect on model fit and predictive performance, adding land use can affect spatial projections of both presence-absence and abundance models.
Resumo:
Social organisation of colonies was examined in the ant Formica cinerea by estimating the coefficient of genetic relatedness among worker nest mates. The estimates based on microsatellite genotypes at three loci ranged from values close to zero to 0.61 across the populations studied in Finland. These results showed that a fundamental feature of colonies, the number of reproductive queens, varied greatly among the populations. Colonies in some populations had a single queen, whereas the nests could have a high number number of queens in other populations. There was a weak but non-significant correlation between the genetic and metric distance of nests within two populations with intermediate level of relatedness. Differentiation among nearby populations (within the dispersal distance of individuals) in one locality indicated limited dispersal or founder effects. This could occur when females are philopatric and stay in the natal polygynous colony which expands by building a network of nest galleries within a single habitat patch.
Resumo:
The reproductive ground plan hypothesis (RGPH) proposes that the physiological pathways regulating reproduction were co-opted to regulate worker division of labor. Support for this hypothesis in honeybees is provided by studies demonstrating that the reproductive potential of workers, assessed by the levels of vitellogenin (Vg), is linked to task performance. Interestingly, contrary to honeybees that have a single Vg ortholog and potentially fertile nurses, the genome of the harvester ant Pogonomyrmex barbatus harbors two Vg genes (Pb_Vg1 and Pb_Vg2) and nurses produce infertile trophic eggs. P. barbatus, thus, provides a unique model to investigate whether Vg duplication in ants was followed by subfunctionalization to acquire reproductive and non-reproductive functions and whether Vg reproductive function was co-opted to regulate behavior in sterile workers. To investigate these questions, we compared the expression patterns of P. barbatus Vg genes and analyzed the phylogenetic relationships and molecular evolution of Vg genes in ants. qRT-PCRs revealed that Pb_Vg1 is more highly expressed in queens compared to workers and in nurses compared to foragers. By contrast, the level of expression of Pb_Vg2 was higher in foragers than in nurses and queens. Phylogenetic analyses show that a first duplication of the ancestral Vg gene occurred after the divergence between the poneroid and formicoid clades and subsequent duplications occurred in the lineages leading to Solenopsis invicta, Linepithema humile and Acromyrmex echinatior. The initial duplication resulted in two Vg gene subfamilies preferentially expressed in queens and nurses (subfamily A) or in foraging workers (subfamily B). Finally, molecular evolution analyses show that the subfamily A experienced positive selection, while the subfamily B showed overall relaxation of purifying selection. Our results suggest that in P. barbatus the Vg gene underwent subfunctionalization after duplication to acquire caste- and behavior- specific expression associated with reproductive and non-reproductive functions, supporting the validity of the RGPH in ants.
Resumo:
In populations of various ant species, many queens reproduce in the same nest (polygyny), and colony boundaries appear to be absent with individuals able to move fi eely between nests (unicoloniality). Such societies depart strongly from a simple family structure and pose a potential challenge to kin selection theory, because high queen number coupled with unrestricted gene flow among nests should result in levels of relatedness among nestmates close to zero. This study investigated the breeding system and genetic structure of a highly polygynous and largely unicolonial population of the wood ant Formica paralugubris. A microsatellite analysis revealed that nestmate workers, reproductive queens and reproductive males (the queens' mates) are all equally related to each other, with relatedness estimates centring around 0.14. This suggests that most of the queens and males reproducing in the study population had mated within or close to their natal nest, and that the queens did not disperse far after mating. We developed a theoretical model to investigate how the breeding system affects the relatedness structure of polygynous colonies. By combining the model and our empirical data, it was estimated that about 99.8% of the reproducing queens and males originated from within the nest, or from a nearby nest. This high rate of local mating and the rarity of long-distance dispersal maintain significant relatedness among nestmates, and contrast with the common view that unicoloniality is coupled with unrestricted gene flow among nests.
Resumo:
INTRODUCTION AND AIMS: This study investigated the associations of alcohol outlet density with specific alcohol outcomes (consumption and consequences) among young men in Switzerland and assessed the possible geographically related variations. DESIGN AND METHODS: Alcohol consumption and drinking consequences were measured in a 2010-2011 study assessing substance use risk factors (Cohort Study on Substance Use Risk Factors) among 5519 young Swiss men. Outlet density was based on the number of on- and off-premise outlets in the district of residence. Linear regression models were run separately for drinking level, heavy episodic drinking (HED) and drinking consequences. Geographically weighted regression models were estimated when variations were recorded at the district level. RESULTS: No consistent association was found between outlet density and drinking consequences. A positive association between drinking level and HED with on-premise outlet density was found. Geographically weighted regressions were run for drinking level and HED. The predicted values for HED were higher in the southwest part of Switzerland (French-speaking part). DISCUSSION AND CONCLUSIONS: Among Swiss young men, the density of outlets and, in particular, the abundance of bars, clubs and other on-premise outlets was associated with drinking level and HED, even when drinking consequences were not significantly affected. These findings support the idea that outlet density needs to be considered when developing and implementing regional-based prevention initiatives. [Astudillo M, Kuendig H, Centeno-Gil A, Wicki M, Gmel G. Regional abundance of on-premise outlets and drinking patterns among Swiss young men: District level analyses and geographic adjustments. Drug Alcohol Rev 2014;33:526-33].
Resumo:
Division of labour among workers is central to the organisation and ecological success of insect societies. If there is a genetic component to worker size, morphology or task preference, an increase in colony genetic diversity arising from the presence of multiple breeders per colony might improve division of labour. We studied the genetic basis of worker size and task preference in Formica selysi, an ant species that shows natural variation in the number of mates per queen and the number of queens per colony. Worker size had a heritable component in colonies headed by a doubly mated queen (h(2)=0.26) and differed significantly among matrilines in multiple-queen colonies. However, higher levels of genetic diversity did not result in more polymorphic workers across single- or multiple-queen colonies. In addition, workers from multiple-queen colonies were consistently smaller and less polymorphic than workers from single-queen colonies. The relationship between task, body size and genetic lineage appeared to be complex. Foragers were significantly larger than brood-tenders, which may provide energetic or ergonomic advantages to the colony. Task specialisation was also often associated with genetic lineage. However, genetic lineage and body size were often correlated with task independently of each other, suggesting that the allocation of workers to tasks is modulated by multiple factors. Overall, these results indicate that an increase in colony genetic diversity does not increase worker size polymorphism but might improve colony homeostasis.