49 resultados para Ananas erectifolius L.B.Smith
Resumo:
Ionotropic glutamate receptors (iGluRs) mediate neuronal communication at synapses throughout vertebrate and invertebrate nervous systems. We have characterized a family of iGluR-related genes in Drosophila, which we name ionotropic receptors (IRs). These receptors do not belong to the well-described kainate, AMPA, or NMDA classes of iGluRs, and they have divergent ligand-binding domains that lack their characteristic glutamate-interacting residues. IRs are expressed in a combinatorial fashion in sensory neurons that respond to many distinct odors but do not express either insect odorant receptors (ORs) or gustatory receptors (GRs). IR proteins accumulate in sensory dendrites and not at synapses. Misexpression of IRs in different olfactory neurons is sufficient to confer ectopic odor responsiveness. Together, these results lead us to propose that the IRs comprise a novel family of chemosensory receptors. Conservation of IR/iGluR-related proteins in bacteria, plants, and animals suggests that this receptor family represents an evolutionarily ancient mechanism for sensing both internal and external chemical cues.
Resumo:
In recent years, elevated arsenic concentrations have been found in waters and soils of many, countries, often resulting in a health threat for the local population. Switzerland is not an exception and this paper deals with the release and subsequent fate of arsenic in a 200-km(2) mountainous watershed, characterized by crystalline silicate rocks (gneisses, schists, amphibolites) that contain abundant As-bearing sulfide ore deposits, some of which have been mined for iron and gold in the past. Using analytical methods common for mineralogical, ground water and soil studies (XRD, XRF, XAS-XANES and -EXAFS, electron microprobe, extraction, ICP, AAS with hydride generator, ion chromatography), seven different field situations and related dispersion processes of natural arsenic have been studied: (1) release by rock weathering, (2) transport and deposition by water and ice; (3) release of As to the ground and surface water due to increasing pH; (4) accumulation in humic soil horizons; (5) remobilization by reduction in water-saturated soils and stagnant ground waters; (6) remobilization by using P-rich fertilizers or dung and (7) oxidation, precipitation and dilution in surface waters. Comparison of the results with experimental adsorption studies and speciation diagrams from the literature allows us to reconstruct and identify the typical behavior of arsenic in a natural environment under temperate climatic conditions. The main parameters identified are: (a) once liberated from the primary minerals, sorption processes on Fe-oxy-hydroxides dominate over Al-phases, such as Al-hydroxides or clay minerals and limit the As concentrations in the spring and well waters between 20 and 300 mug/l. (b) Precipitation as secondary minerals is limited to the weathering domain, where the As concentrations are still high and not yet too diluted by rain and soils waters. (c) Although neutral and alkaline pH conditions clearly increase the mobility of As, the main factor to mobilize As is a low redox potential (Eh close or below 0 mV), which favors the dissolution of the Fe-oxy-hydroxides on which the As is sorbed. (d) X-ray absorption spectroscopy (XAS) of As in water-logged humic forest soils indicates that the reduction to As III only occurs at the solid-water interface and that the solid contains As as As V (e) A and Bh horizons of humic cambisols can effectively capture As when As-rich waters flow through them. Complex spatial and temporal variation of the various parameters in a watershed results in repeated mobilization and immobilization of As, which continuously transports As from the upper to the lower part of a watershed and ultimately to the ocean. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Neural comparisons of bilateral sensory inputs are essential for visual depth perception and accurate localization of sounds in space. All animals, from single-cell prokaryotes to humans, orient themselves in response to environmental chemical stimuli, but the contribution of spatial integration of neural activity in olfaction remains unclear. We investigated this problem in Drosophila melanogaster larvae. Using high-resolution behavioral analysis, we studied the chemotaxis behavior of larvae with a single functional olfactory neuron on either the left or right side of the head, allowing us to examine unilateral or bilateral olfactory input. We developed new spectroscopic methods to create stable odorant gradients in which odor concentrations were experimentally measured. In these controlled environments, we observed that a single functional neuron provided sufficient information to permit larval chemotaxis. We found additional evidence that the overall accuracy of navigation is enhanced by the increase in the signal-to-noise ratio conferred by bilateral sensory input.
Resumo:
BACKGROUND: Cilengitide is a selective αvβ3 and αvβ5 integrin inhibitor. Data from phase 2 trials suggest that it has antitumour activity as a single agent in recurrent glioblastoma and in combination with standard temozolomide chemoradiotherapy in newly diagnosed glioblastoma (particularly in tumours with methylated MGMT promoter). We aimed to assess cilengitide combined with temozolomide chemoradiotherapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter. METHODS: In this multicentre, open-label, phase 3 study, we investigated the efficacy of cilengitide in patients from 146 study sites in 25 countries. Eligible patients (newly diagnosed, histologically proven supratentorial glioblastoma, methylated MGMT promoter, and age ≥18 years) were stratified for prognostic Radiation Therapy Oncology Group recursive partitioning analysis class and geographic region and centrally randomised in a 1:1 ratio with interactive voice response system to receive temozolomide chemoradiotherapy with cilengitide 2000 mg intravenously twice weekly (cilengitide group) or temozolomide chemoradiotherapy alone (control group). Patients and investigators were unmasked to treatment allocation. Maintenance temozolomide was given for up to six cycles, and cilengitide was given for up to 18 months or until disease progression or unacceptable toxic effects. The primary endpoint was overall survival. We analysed survival outcomes by intention to treat. This study is registered with ClinicalTrials.gov, number NCT00689221. FINDINGS: Overall, 3471 patients were screened. Of these patients, 3060 had tumour MGMT status tested; 926 patients had a methylated MGMT promoter, and 545 were randomly assigned to the cilengitide (n=272) or control groups (n=273) between Oct 31, 2008, and May 12, 2011. Median overall survival was 26·3 months (95% CI 23·8-28·8) in the cilengitide group and 26·3 months (23·9-34·7) in the control group (hazard ratio 1·02, 95% CI 0·81-1·29, p=0·86). None of the predefined clinical subgroups showed a benefit from cilengitide. We noted no overall additional toxic effects with cilengitide treatment. The most commonly reported adverse events of grade 3 or worse in the safety population were lymphopenia (31 [12%] in the cilengitide group vs 26 [10%] in the control group), thrombocytopenia (28 [11%] vs 46 [18%]), neutropenia (19 [7%] vs 24 [9%]), leucopenia (18 [7%] vs 20 [8%]), and convulsion (14 [5%] vs 15 [6%]). INTERPRETATION: The addition of cilengitide to temozolomide chemoradiotherapy did not improve outcomes; cilengitide will not be further developed as an anticancer drug. Nevertheless, integrins remain a potential treatment target for glioblastoma. FUNDING: Merck KGaA, Darmstadt, Germany.
Resumo:
We study the discrepancy between the effective flow permeability and the effective seismic permeability, that is, the effective permeability controlling seismic attenuation due to wave-induced fluid flow, in 2D rock samples having mesoscopic heterogeneities and in the presence of strong permeability fluctuations. In order to do so, we employ a numerical oscillatory compressibility test to determine attenuation and velocity dispersion due to wave-induced fluid flow in these kinds of media and compare the responses with those obtained by replacing the heterogeneous permeability field by constant values, including the average permeability as well as the effective flow permeability of the sample. The latter is estimated in a separate upscaling procedure by solving the steady-state flow equation in the rock sample under study. Numerical experiments let us verify that attenuation levels are less significant and the attenuation peak gets broader in the presence of such strong permeability fluctuations. Moreover, we observe that for very low frequencies the effective seismic permeability is similar to the effective flow permeability, while for very high frequencies it approaches the arithmetic average of the permeability field.
Resumo:
Cilengitide, a cyclicized arginine-glycine-aspartic acid-containing pentapeptide, potently blocks ανβ3 and ανβ5 integrin activation. Integrins are upregulated in many malignancies and mediate a wide variety of tumor-stroma interactions. Cilengitide and other integrin-targeting therapeutics have preclinical activity against many cancer subtypes including glioblastoma (GBM), the most common and deadliest CNS tumor. Cilengitide is active against orthotopic GBM xenografts and can augment radiotherapy and chemotherapy in these models. In Phase I and II GBM trials, cilengitide and the combination of cilengitide with standard temozolomide and radiation demonstrate consistent antitumor activity and a favorable safety profile. Cilengitide is currently under evaluation in a pivotal, randomized Phase III study (Cilengitide in Combination With Temozolomide and Radiotherapy in Newly Diagnosed Glioblastoma Phase III Randomized Clinical Trial [CENTRIC]) for newly diagnosed GBM. In addition, randomized controlled Phase II studies with cilengitide are ongoing for non-small-cell lung cancer and squamous cell carcinoma of the head and neck. Cilengitide is the first integrin inhibitor in clinical Phase III development for oncology.
Resumo:
Medical implants, like cardiovascular devices, improve the quality of life for countless individuals but may become infected with bacteria like Staphylococcus aureus. Such infections take the form of a biofilm, a structured community of bacterial cells adherent to the surface of a solid substrate. Every biofilm begins with an attractive force or bond between bacterium and substratum. We used atomic force microscopy to probe experimentally forces between a fibronectin-coated surface (i.e., proxy for an implanted cardiac device) and fibronectin-binding receptors on the surface of individual living bacteria from each of 80 clinical isolates of S. aureus. These isolates originated from humans with infected cardiac devices (CDI; n = 26), uninfected cardiac devices (n = 20), and the anterior nares of asymptomatic subjects (n = 34). CDI isolates exhibited a distinct binding-force signature and had specific single amino acid polymorphisms in fibronectin-binding protein A corresponding to E652D, H782Q, and K786N. In silico molecular dynamics simulations demonstrate that residues D652, Q782, and N786 in fibronectin-binding protein A form extra hydrogen bonds with fibronectin, complementing the higher binding force and energy measured by atomic force microscopy for the CDI isolates. This study is significant, because it links pathogenic bacteria biofilms from the length scale of bonds acting across a nanometer-scale space to the clinical presentation of disease at the human dimension.
Resumo:
Neuropeptide Y appears to modulate epileptic seizures differentially according to the receptor subtypes involved. In the hippocampus, neuropeptide Y expression and release are enhanced in different models of epileptogenesis. On the contrary, the expression of Y1 receptors is decreased and it has been shown that activation of these receptors has pro-convulsant effects. The aim of our study was to investigate the role of Y1 receptors during hippocampal kindling epileptogenesis using (i) knock-out mice lacking Y1 receptors and (ii) intrahippocampal infusion of Y1 antisense oligodeoxynucleotide in rats. Y1 knock-out mice showed similar susceptibility to seizure induction and presented no difference in kindling development as compared with their control littermates. Conversely, local hippocampal down-regulation of Y1 receptors during the first week of hippocampal kindling, induced by a local infusion of a Y1 antisense oligodeoxynucleotide, significantly increased seizure threshold intensity and decreased afterdischarge duration. A reverse effect was observed during the week following the infusion period, which was confirmed by a significant decrease in the number of hippocampal stimulations necessary to evoke generalized seizures. At the end of this second week, an up-regulation of Y1 receptors was observed in kindled rats infused with the antisense as compared with the mismatch-treated controls. Our results in the rat suggest that the down-regulation of Y1 receptors in the hippocampus participates in the control of the initiation of epileptogenesis. The lack of an effect of the deficiency of Y1 receptors in the control of kindling development in Y1 knock-out mice could be due to compensatory mechanisms.
Resumo:
The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.
Resumo:
BACKGROUND: Using multinational collections of methicillin-susceptible Staphylococcus aureus (MSSA) isolates from infective endocarditis (IE) and soft tissue infections (STIs), we sought to (1) validate the finding that S. aureus in clonal complex (CC) 30 is associated with hematogenous complications and (2) test the hypothesis that specific genetic characteristics in S. aureus are associated with infection severity. METHODS: IE and STI isolates from 2 cohorts were frequency matched by geographic origin. Isolates underwent spa typing to infer CC and multiplex polymerase chain reaction for presence of virulence genes. RESULTS: 114 isolate pairs were genotyped. IE isolates were more likely to be CC30 (19.5% vs 6.2%; P = .005) and to contain 3 adhesins (clfB, cna, map/eap; P < .0001 for all) and 5 enterotoxins (tst, sea, sed, see, and sei; P ≤ .005 for all). CC30 isolates were more likely to contain cna, tst, sea, see, seg, and chp (P < .05 for all). CONCLUSIONS: MSSA IE isolates were significantly more likely to be CC30 and to possess a distinct repertoire of virulence genes than MSSA STI isolates from the same region. The genetic basis of this association requires further study.
Resumo:
A variety of studies have demonstrated enhanced blood oxygenation level dependent responses to auditory and tactile stimuli within occipital cortex as a result of early blindness. However, little is known about the organizational principles that drive this cross-modal plasticity. We compared BOLD responses to a wide variety of auditory and tactile tasks (vs. rest) in early-blind and sighted subjects. As expected, cross-modal responses were larger in blind than in sighted subjects in occipital cortex for all tasks (cross-modal plasticity). Within both blind and sighted subject groups, we found patterns of cross-modal activity that were remarkably similar across tasks: a large proportion of cross-modal responses within occipital cortex are neither task nor stimulus specific. We next examined the mechanisms underlying enhanced BOLD responses within early-blind subjects. We found that the enhancement of cross-modal responses due to early blindness was best described as an additive shift, suggesting that cross-modal plasticity within blind subjects does not originate from either a scaling or unmasking of cross-modal responsivities found in sighted subjects.
Resumo:
Mutations in the FGD1 gene have been shown to cause Aarskog-Scott syndrome (AAS), or facio-digito-genital dysplasia (OMIM#305400), an X-linked disorder characterized by distinctive genital and skeletal developmental abnormalities with a broad spectrum of clinical phenotypes. To date, 20 distinct mutations have been reported, but little phenotypic data are available on patients with molecularly confirmed AAS. In the present study, we report on our experience of screening for mutations in the FGD1 gene in a cohort of 60 European patients with a clinically suspected diagnosis of AAS. We identified nine novel mutations in 11 patients (detection rate of 18.33%), including three missense mutations (p.R402Q; p.S558W; p.K748E), four truncating mutations (p.Y530X; p.R656X; c.806delC; c.1620delC), one in-frame deletion (c.2020_2022delGAG) and the first reported splice site mutation (c.1935+3A>C). A recurrent mutation (p.R656X) was detected in three independent families. We did not find any evidence for phenotype-genotype correlations between type and position of mutations and clinical features. In addition to the well-established phenotypic features of AAS, other clinical features are also reported and discussed.
Resumo:
BACKGROUND: Survival outcomes for patients with glioblastoma remain poor, particularly for patients with unmethylated O(6)-methylguanine-DNA methyltransferase (MGMT) gene promoter. This phase II, randomized, open-label, multicenter trial investigated the efficacy and safety of 2 dose regimens of the selective integrin inhibitor cilengitide combined with standard chemoradiotherapy in patients with newly diagnosed glioblastoma and an unmethylated MGMT promoter. METHODS: Overall, 265 patients were randomized (1:1:1) to standard cilengitide (2000 mg 2×/wk; n = 88), intensive cilengitide (2000 mg 5×/wk during wk 1-6, thereafter 2×/wk; n = 88), or a control arm (chemoradiotherapy alone; n = 89). Cilengitide was administered intravenously in combination with daily temozolomide (TMZ) and concomitant radiotherapy (RT; wk 1-6), followed by TMZ maintenance therapy (TMZ/RT→TMZ). The primary endpoint was overall survival; secondary endpoints included progression-free survival, pharmacokinetics, and safety and tolerability. RESULTS: Median overall survival was 16.3 months in the standard cilengitide arm (hazard ratio [HR], 0.686; 95% CI: 0.484, 0.972; P = .032) and 14.5 months in the intensive cilengitide arm (HR, 0.858; 95% CI: 0.612, 1.204; P = .3771) versus 13.4 months in the control arm. Median progression-free survival assessed per independent review committee was 5.6 months (HR, 0.822; 95% CI: 0.595, 1.134) and 5.9 months (HR, 0.794; 95% CI: 0.575, 1.096) in the standard and intensive cilengitide arms, respectively, versus 4.1 months in the control arm. Cilengitide was well tolerated. CONCLUSIONS: Standard and intensive cilengitide dose regimens were well tolerated in combination with TMZ/RT→TMZ. Inconsistent overall survival and progression-free survival outcomes and a limited sample size did not allow firm conclusions regarding clinical efficacy in this exploratory phase II study.