88 resultados para Aeroelascity, Optimization, Uncertainty


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the context of Systems Biology, computer simulations of gene regulatory networks provide a powerful tool to validate hypotheses and to explore possible system behaviors. Nevertheless, modeling a system poses some challenges of its own: especially the step of model calibration is often difficult due to insufficient data. For example when considering developmental systems, mostly qualitative data describing the developmental trajectory is available while common calibration techniques rely on high-resolution quantitative data. Focusing on the calibration of differential equation models for developmental systems, this study investigates different approaches to utilize the available data to overcome these difficulties. More specifically, the fact that developmental processes are hierarchically organized is exploited to increase convergence rates of the calibration process as well as to save computation time. Using a gene regulatory network model for stem cell homeostasis in Arabidopsis thaliana the performance of the different investigated approaches is evaluated, documenting considerable gains provided by the proposed hierarchical approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we present a novel approach for diffusion MRI global tractography. Our formulation models the signal in each voxel as a linear combination of fiber-tract basis func- tions, which consist of a comprehensive set of plausible fiber tracts that are locally compatible with the measured MR signal. This large dictionary of candidate fibers is directly estimated from the data and, subsequently, efficient convex optimization techniques are used for recovering the smallest subset globally best fitting the measured signal. Experimen- tal results conducted on a realistic phantom demonstrate that our approach significantly reduces the computational cost of global tractography while still attaining a reconstruction quality at least as good as the state-of-the-art global methods.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A basic prerequisite for in vivo X-ray imaging of the lung is the exact determination of radiation dose. Achieving resolutions of the order of micrometres may become particularly challenging owing to increased dose, which in the worst case can be lethal for the imaged animal model. A framework for linking image quality to radiation dose in order to optimize experimental parameters with respect to dose reduction is presented. The approach may find application for current and future in vivo studies to facilitate proper experiment planning and radiation risk assessment on the one hand and exploit imaging capabilities on the other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor Endothelial Marker-1 (TEM1/CD248) is a tumor vascular marker with high therapeutic and diagnostic potentials. Immuno-imaging with TEM1-specific antibodies can help to detect cancerous lesions, monitor tumor responses, and select patients that are most likely to benefit from TEM1-targeted therapies. In particular, near infrared(NIR) optical imaging with biomarker-specific antibodies can provide real-time, tomographic information without exposing the subjects to radioactivity. To maximize the theranostic potential of TEM1, we developed a panel of all human, multivalent Fc-fusion proteins based on a previously identified single chain antibody (scFv78) that recognizes both human and mouse TEM1. By characterizing avidity, stability, and pharmacokinectics, we identified one fusion protein, 78Fc, with desirable characteristics for immuno-imaging applications. The biodistribution of radiolabeled 78Fc showed that this antibody had minimal binding to normal organs, which have low expression of TEM1. Next, we developed a 78Fc-based tracer and tested its performance in different TEM1-expressing mouse models. The NIR imaging and tomography results suggest that the 78Fc-NIR tracer performs well in distinguishing mouse- or human-TEM1 expressing tumor grafts from normal organs and control grafts in vivo. From these results we conclude that further development and optimization of 78Fc as a TEM1-targeted imaging agent for use in clinical settings is warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of CT applications might become a public health problem if no effort is made on the justification and the optimisation of the examinations. This paper presents some hints to assure that the risk-benefit compromise remains in favour of the patient, especially when one deals with the examinations of young patients. In this context a particular attention has to be made on the justification of the examination. When performing the acquisition one needs to optimise the extension of the volume investigated together with the number of acquisition sequences used. Finally, the use of automatic exposure systems, now available on all the units, and the use of the Diagnostic Reference Levels (DRL) should allow help radiologists to control the exposure of their patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vast territories that have been radioactively contaminated during the 1986 Chernobyl accident provide a substantial data set of radioactive monitoring data, which can be used for the verification and testing of the different spatial estimation (prediction) methods involved in risk assessment studies. Using the Chernobyl data set for such a purpose is motivated by its heterogeneous spatial structure (the data are characterized by large-scale correlations, short-scale variability, spotty features, etc.). The present work is concerned with the application of the Bayesian Maximum Entropy (BME) method to estimate the extent and the magnitude of the radioactive soil contamination by 137Cs due to the Chernobyl fallout. The powerful BME method allows rigorous incorporation of a wide variety of knowledge bases into the spatial estimation procedure leading to informative contamination maps. Exact measurements (?hard? data) are combined with secondary information on local uncertainties (treated as ?soft? data) to generate science-based uncertainty assessment of soil contamination estimates at unsampled locations. BME describes uncertainty in terms of the posterior probability distributions generated across space, whereas no assumption about the underlying distribution is made and non-linear estimators are automatically incorporated. Traditional estimation variances based on the assumption of an underlying Gaussian distribution (analogous, e.g., to the kriging variance) can be derived as a special case of the BME uncertainty analysis. The BME estimates obtained using hard and soft data are compared with the BME estimates obtained using only hard data. The comparison involves both the accuracy of the estimation maps using the exact data and the assessment of the associated uncertainty using repeated measurements. Furthermore, a comparison of the spatial estimation accuracy obtained by the two methods was carried out using a validation data set of hard data. Finally, a separate uncertainty analysis was conducted that evaluated the ability of the posterior probabilities to reproduce the distribution of the raw repeated measurements available in certain populated sites. The analysis provides an illustration of the improvement in mapping accuracy obtained by adding soft data to the existing hard data and, in general, demonstrates that the BME method performs well both in terms of estimation accuracy as well as in terms estimation error assessment, which are both useful features for the Chernobyl fallout study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the key emphases of these three essays is to provide practical managerial insight. However, good practical insight, can only be created by grounding it firmly on theoretical and empirical research. Practical experience-based understanding without theoretical grounding remains tacit and cannot be easily disseminated. Theoretical understanding without links to real life remains sterile. My studies aim to increase the understanding of how radical innovation could be generated at large established firms and how it can have an impact on business performance as most businesses pursue innovation with one prime objective: value creation. My studies focus on large established firms with sales revenue exceeding USD $ 1 billion. Usually large established firms cannot rely on informal ways of management, as these firms tend to be multinational businesses operating with subsidiaries, offices, or production facilities in more than one country. I. Internal and External Determinants of Corporate Venture Capital Investment The goal of this chapter is to focus on CVC as one of the mechanisms available for established firms to source new ideas that can be exploited. We explore the internal and external determinants under which established firms engage in CVC to source new knowledge through investment in startups. We attempt to make scholars and managers aware of the forces that influence CVC activity by providing findings and insights to facilitate the strategic management of CVC. There are research opportunities to further understand the CVC phenomenon. Why do companies engage in CVC? What motivates them to continue "playing the game" and keep their active CVC investment status. The study examines CVC investment activity, and the importance of understanding the influential factors that make a firm decide to engage in CVC. The main question is: How do established firms' CVC programs adapt to changing internal conditions and external environments. Adaptation typically involves learning from exploratory endeavors, which enable companies to transform the ways they compete (Guth & Ginsberg, 1990). Our study extends the current stream of research on CVC. It aims to contribute to the literature by providing an extensive comparison of internal and external determinants leading to CVC investment activity. To our knowledge, this is the first study to examine the influence of internal and external determinants on CVC activity throughout specific expansion and contraction periods determined by structural breaks occurring between 1985 to 2008. Our econometric analysis indicates a strong and significant positive association between CVC activity and R&D, cash flow availability and environmental financial market conditions, as well as a significant negative association between sales growth and the decision to engage into CVC. The analysis of this study reveals that CVC investment is highly volatile, as demonstrated by dramatic fluctuations in CVC investment activity over the past decades. When analyzing the overall cyclical CVC period from 1985 to 2008 the results of our study suggest that CVC activity has a pattern influenced by financial factors such as the level of R&D, free cash flow, lack of sales growth, and external conditions of the economy, with the NASDAQ price index as the most significant variable influencing CVC during this period. II. Contribution of CVC and its Interaction with R&D to Value Creation The second essay takes into account the demands of corporate executives and shareholders regarding business performance and value creation justifications for investments in innovation. Billions of dollars are invested in CVC and R&D. However there is little evidence that CVC and its interaction with R&D create value. Firms operating in dynamic business sectors seek to innovate to create the value demanded by changing market conditions, consumer preferences, and competitive offerings. Consequently, firms operating in such business sectors put a premium on finding new, sustainable and competitive value propositions. CVC and R&D can help them in this challenge. Dushnitsky and Lenox (2006) presented evidence that CVC investment is associated with value creation. However, studies have shown that the most innovative firms do not necessarily benefit from innovation. For instance Oyon (2007) indicated that between 1995 and 2005 the most innovative automotive companies did not obtain adequate rewards for shareholders. The interaction between CVC and R&D has generated much debate in the CVC literature. Some researchers see them as substitutes suggesting that firms have to choose between CVC and R&D (Hellmann, 2002), while others expect them to be complementary (Chesbrough & Tucci, 2004). This study explores the interaction that CVC and R&D have on value creation. This essay examines the impact of CVC and R&D on value creation over sixteen years across six business sectors and different geographical regions. Our findings suggest that the effect of CVC and its interaction with R&D on value creation is positive and significant. In dynamic business sectors technologies rapidly relinquish obsolete, consequently firms operating in such business sectors need to continuously develop new sources of value creation (Eisenhardt & Martin, 2000; Qualls, Olshavsky, & Michaels, 1981). We conclude that in order to impact value creation, firms operating in business sectors such as Engineering & Business Services, and Information Communication & Technology ought to consider CVC as a vital element of their innovation strategy. Moreover, regarding the CVC and R&D interaction effect, our findings suggest that R&D and CVC are complementary to value creation hence firms in certain business sectors can be better off supporting both R&D and CVC simultaneously to increase the probability of generating value creation. III. MCS and Organizational Structures for Radical Innovation Incremental innovation is necessary for continuous improvement but it does not provide a sustainable permanent source of competitiveness (Cooper, 2003). On the other hand, radical innovation pursuing new technologies and new market frontiers can generate new platforms for growth providing firms with competitive advantages and high economic margin rents (Duchesneau et al., 1979; Markides & Geroski, 2005; O'Connor & DeMartino, 2006; Utterback, 1994). Interestingly, not all companies distinguish between incremental and radical innovation, and more importantly firms that manage innovation through a one-sizefits- all process can almost guarantee a sub-optimization of certain systems and resources (Davila et al., 2006). Moreover, we conducted research on the utilization of MCS along with radical innovation and flexible organizational structures as these have been associated with firm growth (Cooper, 2003; Davila & Foster, 2005, 2007; Markides & Geroski, 2005; O'Connor & DeMartino, 2006). Davila et al. (2009) identified research opportunities for innovation management and provided a list of pending issues: How do companies manage the process of radical and incremental innovation? What are the performance measures companies use to manage radical ideas and how do they select them? The fundamental objective of this paper is to address the following research question: What are the processes, MCS, and organizational structures for generating radical innovation? Moreover, in recent years, research on innovation management has been conducted mainly at either the firm level (Birkinshaw, Hamel, & Mol, 2008a) or at the project level examining appropriate management techniques associated with high levels of uncertainty (Burgelman & Sayles, 1988; Dougherty & Heller, 1994; Jelinek & Schoonhoven, 1993; Kanter, North, Bernstein, & Williamson, 1990; Leifer et al., 2000). Therefore, we embarked on a novel process-related research framework to observe the process stages, MCS, and organizational structures that can generate radical innovation. This article is based on a case study at Alcan Engineered Products, a division of a multinational company provider of lightweight material solutions. Our observations suggest that incremental and radical innovation should be managed through different processes, MCS and organizational structures that ought to be activated and adapted contingent to the type of innovation that is being pursued (i.e. incremental or radical innovation). More importantly, we conclude that radical can be generated in a systematic way through enablers such as processes, MCS, and organizational structures. This is in line with the findings of Jelinek and Schoonhoven (1993) and Davila et al. (2006; 2007) who show that innovative firms have institutionalized mechanisms, arguing that radical innovation cannot occur in an organic environment where flexibility and consensus are the main managerial mechanisms. They rather argue that radical innovation requires a clear organizational structure and formal MCS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following the introduction of single-metal deposition (SMD), a simplified fingermark detection technique based on multimetal deposition, optimization studies were conducted. The different parameters of the original formula were tested and the results were evaluated based on the contrast and overall aspect of the enhanced fingermarks. The new formula for SMD was found based on the most optimized parameters. Interestingly, it was found that important variations from the base parameters did not significantly affect the outcome of the enhancement, thus demonstrating that SMD is a very robust technique. Finally, a comparison of the optimized SMD with multi-metal deposition (MMD) was carried out on different surfaces. It was demonstrated that SMD produces comparable results to MMD, thus validating the technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monitoring and management of intracranial pressure (ICP) and cerebral perfusion pressure (CPP) is a standard of care after traumatic brain injury (TBI). However, the pathophysiology of so-called secondary brain injury, i.e., the cascade of potentially deleterious events that occur in the early phase following initial cerebral insult-after TBI, is complex, involving a subtle interplay between cerebral blood flow (CBF), oxygen delivery and utilization, and supply of main cerebral energy substrates (glucose) to the injured brain. Regulation of this interplay depends on the type of injury and may vary individually and over time. In this setting, patient management can be a challenging task, where standard ICP/CPP monitoring may become insufficient to prevent secondary brain injury. Growing clinical evidence demonstrates that so-called multimodal brain monitoring, including brain tissue oxygen (PbtO2), cerebral microdialysis and transcranial Doppler among others, might help to optimize CBF and the delivery of oxygen/energy substrate at the bedside, thereby improving the management of secondary brain injury. Looking beyond ICP and CPP, and applying a multimodal therapeutic approach for the optimization of CBF, oxygen delivery, and brain energy supply may eventually improve overall care of patients with head injury. This review summarizes some of the important pathophysiological determinants of secondary cerebral damage after TBI and discusses novel approaches to optimize CBF and provide adequate oxygen and energy supply to the injured brain using multimodal brain monitoring.