191 resultados para Action spectroscopy
Resumo:
Near infrared spectroscopy (NIRS) is a non-invasive method of estimating the haemoglobin concentration changes in certain tissues. It is frequently used to monitor oxygenation of the brain in neonates. At present it is not clear whether near infrared spectroscopy of other organs (e.g. the liver as a corresponding site in the splanchnic region, which reacts very sensitively to haemodynamic instability) provides reliable values on their tissue oxygenation. The aim of the study was to test near infrared spectroscopy by measuring known physiologic changes in tissue oxygenation of the liver in newborn infants during and after feeding via a naso-gastric tube. The test-retest variability of such measurements was also determined. On 28 occasions in 25 infants we measured the tissue oxygenation index (TOI) of the liver and the brain continuously before, during and 30 minutes after feeding via a gastric tube. Simultaneously we measured arterial oxygen saturation (SaO2), heart rate (HR) and mean arterial blood pressure (MAP). In 10 other newborn infants we performed a test-retest analysis of the liver tissue oxygenation index to estimate the variability in repeated intra-individual measurements. The tissue oxygenation index of the liver increased significantly from 56.7 +/- 7.5% before to 60.3 +/- 5.6% after feeding (p < 0.005), and remained unchanged for the next 30 minutes. The tissue oxygenation index of the brain (62.1 +/- 9.7%), SaO2 (94.4 +/- 7.1%), heart rate (145 +/- 17.3 min-1) and mean arterial blood pressure (52.8 +/- 10.2 mm Hg) did not change significantly. The test-retest variability for intra-individual measurements was 2.7 +/- 2.1%. After bolus feeding the tissue oxygenation index of the liver increased as expected. This indicates that near infrared spectroscopy is suitable for monitoring changes in tissue oxygenation of the liver in newborn infants.
Resumo:
Recent studies have led to the discovery of a mediator that acts as an endogenous counter-regulator of glucocorticoid action within the immune system. Isolated as a product of anterior pituitary cells, this protein was found to have the sequence of macrophage migration inhibitory factor (MIF), one of the first cytokine activities to be described. Macrophages and T cells release MIF in response both to various inflammatory stimuli and upon incubation with low concentrations of glucocorticoids. The glucocorticoid-induced secretion of MIF is tightly regulated and decreases at high, anti-inflammatory steroid concentrations. Once secreted, MIF "overrides" the anti-inflammatory and immunosuppressive effects of steroids on macrophage and T-cell cytokine production. The physiological role of MIF thus appears to be to counter-balance steroid inhibition of the inflammatory response. Anti-MIF antibodies fully protect animals from experimentally induced gram-negative or gram-positive septic shock, an effect that may be the result of the increased anti-inflammatory effects of glucocorticoids after neutralization of endogenous MIF. Anti-MIF therapeutic strategies are presently under development and may prove to be a means to modulate cytokine production in septic shock as well as in other inflammatory disease states.
Resumo:
Making the switch: Compounds 1 and 2 are used as metabolic markers for NMR detection. When neuronal cells switch to a glycolytic state, an uneven distribution of (13) C in the N-acetyl group results, thus giving a mixture of the metabolites 1 and 2. It is therefore possible to monitor flux through different metabolic pathways, such as glycolysis, the tricarboxylic acid cycle, and the hexosamine biosynthetic pathway, using a single molecule.
Resumo:
Gliomas are routinely graded according to histopathological criteria established by the World Health Organization. Although this classification can be used to understand some of the variance in the clinical outcome of patients, there is still substantial heterogeneity within and between lesions of the same grade. This study evaluated image-guided tissue samples acquired from a large cohort of patients presenting with either new or recurrent gliomas of grades II-IV using ex vivo proton high-resolution magic angle spinning spectroscopy. The quantification of metabolite levels revealed several discrete profiles associated with primary glioma subtypes, as well as secondary subtypes that had undergone transformation to a higher grade at the time of recurrence. Statistical modeling further demonstrated that these metabolomic profiles could be differentially classified with respect to pathological grading and inter-grade conversions. Importantly, the myo-inositol to total choline index allowed for a separation of recurrent low-grade gliomas on different pathological trajectories, the heightened ratio of phosphocholine to glycerophosphocholine uniformly characterized several forms of glioblastoma multiforme, and the onco-metabolite D-2-hydroxyglutarate was shown to help distinguish secondary from primary grade IV glioma, as well as grade II and III from grade IV glioma. These data provide evidence that metabolite levels are of interest in the assessment of both intra-grade and intra-lesional malignancy. Such information could be used to enhance the diagnostic specificity of in vivo spectroscopy and to aid in the selection of the most appropriate therapy for individual patients.
Resumo:
SOUND OBJECTS IN TIME, SPACE AND ACTIONThe term "sound object" describes an auditory experience that is associated with an acoustic event produced by a sound source. At cortical level, sound objects are represented by temporo-spatial activity patterns within distributed neural networks. This investigation concerns temporal, spatial and action aspects as assessed in normal subjects using electrical imaging or measurement of motor activity induced by transcranial magnetic stimulation (TMS).Hearing the same sound again has been shown to facilitate behavioral responses (repetition priming) and to modulate neural activity (repetition suppression). In natural settings the same source is often heard again and again, with variations in spectro-temporal and spatial characteristics. I have investigated how such repeats influence response times in a living vs. non-living categorization task and the associated spatio-temporal patterns of brain activity in humans. Dynamic analysis of distributed source estimations revealed differential sound object representations within the auditory cortex as a function of the temporal history of exposure to these objects. Often heard sounds are coded by a modulation in a bilateral network. Recently heard sounds, independently of the number of previous exposures, are coded by a modulation of a left-sided network.With sound objects which carry spatial information, I have investigated how spatial aspects of the repeats influence neural representations. Dynamics analyses of distributed source estimations revealed an ultra rapid discrimination of sound objects which are characterized by spatial cues. This discrimination involved two temporo-spatially distinct cortical representations, one associated with position-independent and the other with position-linked representations within the auditory ventral/what stream.Action-related sounds were shown to increase the excitability of motoneurons within the primary motor cortex, possibly via an input from the mirror neuron system. The role of motor representations remains unclear. I have investigated repetition priming-induced plasticity of the motor representations of action sounds with the measurement of motor activity induced by TMS pulses applied on the hand motor cortex. TMS delivered to the hand area within the primary motor cortex yielded larger magnetic evoked potentials (MEPs) while the subject was listening to sounds associated with manual than non- manual actions. Repetition suppression was observed at motoneuron level, since during a repeated exposure to the same manual action sound the MEPs were smaller. I discuss these results in terms of specialized neural network involved in sound processing, which is characterized by repetition-induced plasticity.Thus, neural networks which underlie sound object representations are characterized by modulations which keep track of the temporal and spatial history of the sound and, in case of action related sounds, also of the way in which the sound is produced.LES OBJETS SONORES AU TRAVERS DU TEMPS, DE L'ESPACE ET DES ACTIONSLe terme "objet sonore" décrit une expérience auditive associée avec un événement acoustique produit par une source sonore. Au niveau cortical, les objets sonores sont représentés par des patterns d'activités dans des réseaux neuronaux distribués. Ce travail traite les aspects temporels, spatiaux et liés aux actions, évalués à l'aide de l'imagerie électrique ou par des mesures de l'activité motrice induite par stimulation magnétique trans-crânienne (SMT) chez des sujets sains. Entendre le même son de façon répétitive facilite la réponse comportementale (amorçage de répétition) et module l'activité neuronale (suppression liée à la répétition). Dans un cadre naturel, la même source est souvent entendue plusieurs fois, avec des variations spectro-temporelles et de ses caractéristiques spatiales. J'ai étudié la façon dont ces répétitions influencent le temps de réponse lors d'une tâche de catégorisation vivant vs. non-vivant, et les patterns d'activité cérébrale qui lui sont associés. Des analyses dynamiques d'estimations de sources ont révélé des représentations différenciées des objets sonores au niveau du cortex auditif en fonction de l'historique d'exposition à ces objets. Les sons souvent entendus sont codés par des modulations d'un réseau bilatéral. Les sons récemment entendus sont codé par des modulations d'un réseau du côté gauche, indépendamment du nombre d'expositions. Avec des objets sonores véhiculant de l'information spatiale, j'ai étudié la façon dont les aspects spatiaux des sons répétés influencent les représentations neuronales. Des analyses dynamiques d'estimations de sources ont révélé une discrimination ultra rapide des objets sonores caractérisés par des indices spatiaux. Cette discrimination implique deux représentations corticales temporellement et spatialement distinctes, l'une associée à des représentations indépendantes de la position et l'autre à des représentations liées à la position. Ces représentations sont localisées dans la voie auditive ventrale du "quoi".Des sons d'actions augmentent l'excitabilité des motoneurones dans le cortex moteur primaire, possiblement par une afférence du system des neurones miroir. Le rôle des représentations motrices des sons d'actions reste peu clair. J'ai étudié la plasticité des représentations motrices induites par l'amorçage de répétition à l'aide de mesures de potentiels moteurs évoqués (PMEs) induits par des pulsations de SMT sur le cortex moteur de la main. La SMT appliquée sur le cortex moteur primaire de la main produit de plus grands PMEs alors que les sujets écoutent des sons associée à des actions manuelles en comparaison avec des sons d'actions non manuelles. Une suppression liée à la répétition a été observée au niveau des motoneurones, étant donné que lors de l'exposition répétée au son de la même action manuelle les PMEs étaient plus petits. Ces résultats sont discuté en termes de réseaux neuronaux spécialisés impliqués dans le traitement des sons et caractérisés par de la plasticité induite par la répétition. Ainsi, les réseaux neuronaux qui sous-tendent les représentations des objets sonores sont caractérisés par des modulations qui gardent une trace de l'histoire temporelle et spatiale du son ainsi que de la manière dont le son a été produit, en cas de sons d'actions.
Resumo:
Apart from several growth factors which play a crucial role in the survival and development of the central and peripheral nervous systems, thyroid hormones can affect different processes involved in the differentiation and maturation of neurons. The present study was initiated to determine whether triiodothyronine (T3) affects the survival and neurite outgrowth of primary sensory neurons in vitro. Dorsal root ganglia (DRG) from 19-day-old embryos or newborn rats were plated in explant or dissociated cell cultures. The effect of T3 on neuron survival was tested, either in mixed DRG cell cultures, where neurons grow with non-neuronal cells, or in neuron-enriched cultures where non-neuronal cells were eliminated at the outset. T3, in physiological concentrations, promoted the growth of neurons in mixed DRG cell cultures as well as in neuron-enriched cultures without added nerve growth factor (NGF). Since neuron survival in neuron-enriched cultures cannot be promoted by endogenous neurotrophic factors synthesized by non-neuronal cells, the increased number of surviving neurons was due to a direct trophic action of T3. Another trophic effect was revealed in this study: T3 sustained the neurite outgrowth of sensory neurons in DRG explants. The stimulatory effect of T3 on nerve fibre outgrowth was considerably reduced when non-neuronal cell proliferation was inhibited by the antimitotic agent cytosine arabinoside, and was completely suppressed when the great majority of non-neuronal cells were eliminated in neuron-enriched cultures. These results indicate that the stimulatory effect of T3 on neurite outgrowth is mediated through non-neuronal cells. It is conceivable that T3 up-regulates Schwann cell expression of a neurotrophic factor, which in turn stimulates axon growth of sensory neurons. Together, these results demonstrate that T3 promotes both survival and neurite outgrowth of primary sensory neurons in DRG cell cultures. The trophic actions of T3 on neuron survival and neurite outgrowth operate under two different pathways.
Resumo:
Objectives: Magnetic resonance (MR) imaging and spectroscopy (MRS) allow the establishment of the anatomical evolution and neurochemical profiles of ischemic lesions. The aim of the present study was to identify markers of reversible and irreversible damage by comparing the effects of 10-mins middle cerebral artery occlusion (MCAO), mimicking a transient ischemic attack, with the effects of 30-mins MCAO, inducing a striatal lesion. Methods: ICR-CD1 mice were subjected to 10-mins (n = 11) or 30-mins (n = 9) endoluminal MCAO by filament technique at 0 h. The regional cerebral blood flow (CBF) was monitored in all animals by laser- Doppler flowmetry with a flexible probe fixed on the skull with < 20% of baseline CBF during ischemia and > 70% during reperfusion. All MR studies were carried out in a horizontal 14.1T magnet. Fast spin echo images with T2-weighted parameters were acquired to localize the volume of interest and evaluate the lesion size. Immediately after adjustment of field inhomogeneities, localized 1H MRS was applied to obtain the neurochemical profile from the striatum (6 to 8 microliters). Six animals (sham group) underwent nearly identical procedures without MCAO. Results: The 10-mins MCAO induced no MR- or histologically detectable lesion in most of the mice and a small lesion in some of them. We thus had two groups with the same duration of ischemia but a different outcome, which could be compared to sham-operated mice and more severe ischemic mice (30-mins MCAO). Lactate increase, a hallmark of ischemic insult, was only detected significantly after 30-mins MCAO, whereas at 3 h post ischemia, glutamine was increased in all ischemic mice independently of duration and outcome. In contrast, glutamate, and even more so, N-acetyl-aspartate, decreased only in those mice exhibiting visible lesions on T2-weighted images at 24 h. Conclusions: These results suggest that an increased glutamine/glutamate ratio is a sensitive marker indicating the presence of an excitotoxic insult. Glutamate and NAA, on the other hand, appear to predict permanent neuronal damage. In conclusion, as early as 3 h post ischemia, it is possible to identify early metabolic markers manifesting the presence of a mild ischemic insult as well as the lesion outcome at 24 h.