58 resultados para ADIPOCYTE
Dipeptidyl-peptidase-IV by cleaving neuropeptide Y induces lipid accumulation and PPAR-γ expression.
Resumo:
We evaluated the effects of dipeptidyl peptidase-IV (DPPIV), and its inhibitor, vildagliptin, on adipogenesis and lipolysis in a pre-adipocyte murine cell line (3T3-L1). The exogenous rDPPIV increased lipid accumulation and PPAR-γ expression, whereas an inhibitor of DPPIV, the anti-diabetic drug vildagliptin, suppresses the stimulatory role of DPPIV on adipogenesis and lipid accumulation, but had no effect on lipolysis. NPY immunoneutralization or NPY Y(2) receptor blockage inhibited DPPIV stimulatory effects on lipid accumulation, collectively, indicating that DPPIV has an adipogenic effect through NPY cleavage and subsequent NPY Y(2) activation. Vildagliptin inhibits PPAR-γ expression and lipid accumulation without changing lipolysis, suggesting that this does not impair the ability of adipose tissue to store triglycerides inside lipid droplets. These data indicate that DPPIV and NPY interact on lipid metabolism to promote adipose tissue depot.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily implicated in adipocyte differentiation. The observations that PPAR alpha is a regulator of hepatic lipid metabolism and that the insulin-sensitizing thiazolidinediones are ligands for PPAR gamma suggest that cross-talk might exist between insulin signaling and PPAR activity, possibly through insulin-induced PPAR phosphorylation. Immunoprecipitation of endogenous PPAR alpha from primary rat adipocytes prelabeled with [32P]-orthophosphate and pretreated for 2 h with vanadate and okadaic acid demonstrated for the first time that PPAR alpha is a phosphoprotein in vivo. Treatment with insulin induced a time-dependent increase in PPAR phosphorylation showing a 3-fold increase after 30 min. Insulin also increased the phosphorylation of human PPAR alpha expressed in CV-1 cells. These changes in phosphorylation were paralleled by enhanced transcriptional activity of PPAR alpha and gamma. Transfection studies in CV-1 cells and HepG2 cells revealed a nearly 2-fold increase of PPAR activity in the presence of insulin. In contrast, insulin had no effect on the transcriptional activity of transfected thyroid hormone receptor in CV-1 cells, suggesting a PPAR-specific effect. Thus, insulin stimulates PPAR alpha phosphorylation and enhances the transcriptional activity of PPAR, suggesting that the transcriptional activity of this nuclear hormone receptor might be modulated by insulin-mediated phosphorylation.
Resumo:
The control of body weight and of blood glucose concentrations depends on the exquisite coordination of the function of several organs and tissues, in particular the liver, muscle and fat. These organs and tissues have major roles in the use and storage of nutrients in the form of glycogen or triglycerides and in the release of glucose or free fatty acids into the blood, in periods of metabolic needs. These mechanisms are tightly regulated by hormonal and nervous signals, which are generated by specialized cells that detect variations in blood glucose or lipid concentrations. The hormones insulin and glucagon not only regulate glycemic levels through their action on these organs and the sympathetic and parasympathetic branches of the autonomic nervous system, which are activated by glucose or lipid sensors, but also modulate pancreatic hormone secretion and liver, muscle and fat glucose and lipid metabolism. Other signaling molecules, such as the adipocyte hormones leptin and adiponectin, have circulating plasma concentrations that reflect the level of fat stored in adipocytes. These signals are integrated at the level of the hypothalamus by the melanocortin pathway, which produces orexigenic and anorexigenic neuropeptides to control feeding behavior, energy expenditure and glucose homeostasis. Work from several laboratories, including ours, has explored the physiological role of glucose as a signal that regulates these homeostatic processes and has tested the hypothesis that the mechanism of glucose sensing that controls insulin secretion by the pancreatic beta-cells is also used by other cell types. I discuss here evidence for these mechanisms, how they integrate signals from other nutrients such as lipids and how their deregulation may initiate metabolic diseases.
Resumo:
Peroxisome proliferator-activated receptor gamma (PPAR-gamma) plays a key role in adipocyte differentiation and insulin sensitivity. Its synthetic ligands, the thiazolidinediones (TZD), are used as insulin sensitizers in the treatment of type 2 diabetes. These compounds induce both adipocyte differentiation in cell culture models and promote weight gain in rodents and humans. Here, we report on the identification of a new synthetic PPARgamma antagonist, the phosphonophosphate SR-202, which inhibits both TZD-stimulated recruitment of the coactivator steroid receptor coactivator-1 and TZD-induced transcriptional activity of the receptor. In cell culture, SR-202 efficiently antagonizes hormone- and TZD-induced adipocyte differentiation. In vivo, decreasing PPARgamma activity, either by treatment with SR-202 or by invalidation of one allele of the PPARgamma gene, leads to a reduction of both high fat diet-induced adipocyte hypertrophy and insulin resistance. These effects are accompanied by a smaller size of the adipocytes and a reduction of TNFalpha and leptin secretion. Treatment with SR-202 also dramatically improves insulin sensitivity in the diabetic ob/ob mice. Thus, although we cannot exclude that its actions involve additional signaling mechanisms, SR-202 represents a new selective PPARgamma antagonist that is effective both in vitro and in vivo. Because it yields both antiobesity and antidiabetic effects, SR-202 may be a lead for new compounds to be used in the treatment of obesity and type 2 diabetes.
Resumo:
The peroxisome proliferator-activated receptor gamma (PPARgamma) is abundantly expressed in adipocytes, and plays an important role in adipocyte differentiation and fat accretion. It is a heterodimeric partner of the retinoid X receptors alpha, beta and gamma, which are also expressed in the adipose tissue. As lethality of PPARgamma(-/-) and RXRalpha(-/-) mouse fetuses precluded the analysis of PPARgamma and RXRalpha functions in mature adipocytes, we generated RXRalpha(ad-/-) and PPARgamma(ad-/-) mice, in which RXRalpha and PPARgamma are selectively ablated in adult adipocytes, respectively. Even though the adiposity of RXRalpha(ad-/-) mice is similar to that of control mice when fed a regular diet, they are resistant to chemically and dietary-induced obesity. However, mature adipocytes lacking either both RXRalpha and RXRgamma or PPARgamma die, and are replaced by newly formed adipocytes. Thus, in adipocytes, RXRalpha is essential for lipogenesis, but RXRgamma can functionally replace RXRalpha for the adipocyte vital functions exerted by PPARgamma/RXR heterodimers.
Resumo:
NF1 is a family of polypeptides that binds to discrete DNA motifs and plays varying roles in the regulation of gene expression. These polypeptides are also thought to mediate the expression of differentiation-specific markers such as adipocyte and mammary cell type-specific genes. The expression of a number of cellular differentiation-specific markers is down-regulated during neoplastic transformation. We therefore investigated whether oncogenic transformation interferes with the action of NF1. Stable transfection of activated Ha-ras into a number of murine cells correlated with a down-regulation of the expression of the NF1 genes NF1/CTF and NF1/X. The down-regulation was not at the transcriptional level but at the level of stability of the NF1 mRNAs. The level of the DNA binding activity of the NF1 proteins was also reduced in Ha-v-ras-transformed cells, and the expression of a gene that depends on this family of transcription factors was specifically repressed. These results demonstrate that an activated Ha-ras-induced pathway destabilizes the half-life of mRNAs encoding specific members in the NF1 family of transcription factors, which leads to a decrease in NF1-dependent gene expression.
Resumo:
Obesity results from chronic energy surplus and excess lipid storage in white adipose tissue (WAT). In contrast, brown adipose tissue (BAT) efficiently burns lipids through adaptive thermogenesis. Studying mouse models, we show that cyclooxygenase (COX)-2, a rate-limiting enzyme in prostaglandin (PG) synthesis, is a downstream effector of beta-adrenergic signaling in WAT and is required for the induction of BAT in WAT depots. PG shifted the differentiation of defined mesenchymal progenitors toward a brown adipocyte phenotype. Overexpression of COX-2 in WAT induced de novo BAT recruitment in WAT, increased systemic energy expenditure, and protected mice against high-fat diet-induced obesity. Thus, COX-2 appears integral to de novo BAT recruitment, which suggests that the PG pathway regulates systemic energy homeostasis.
Resumo:
Oxygen consumption of collagenase-liberated rat adipocytes was measured by two different techniques: a microspectrophotometric method using hemoglobin as indicator of respiration and a technique using the oxygen electrode. These two completely different techniques gave similar values for oxygen consumption. With the spectrophotometric method, the oxygen consumption of single fat cells was determined. A close positive correlation (r = greater than 0.90) between oxygen consumption and fat cell size was observed in each tissue examined. With the oxygen electrode technique, oxygen consumption of adipocyte suspensions from young (40 days, 180 g) and old (90 days, 480 g) rats was examined. Fat cells of the suspensions were separated into classes of different size by a flotation technique. A significant positive correlation between fat cell size and oxygen consumption was observed in both young (r = 0.88) and old (r = 0.95) rats. However, the slope was much steeper in young rats. At a cell weight of 0.1 microgram the oxygen consumption was 0.364 and 0.086 microL O2/10(6) cells/min-1 in young and old rats, respectively. In the literature, a number of separate metabolic pathways have been found to be related positively to fat cell size and negatively to age. We conclude that these scattered metabolic observations are in agreement with integrated data on energy expenditure as evaluated from oxygen consumption. Estimations of the energy expenditure of adipose tissue indicates that this tissue is responsible for about 1% and 0.5% of the total energy expenditure in young and old rats, respectively.
Resumo:
Different interactions have been described between glucocorticoids and the product of the ob gene leptin. Leptin can inhibit the activation of the hypothalamo-pituitary-adrenal axis by stressful stimuli, whereas adrenal glucocorticoids stimulate leptin production by the adipocyte. The present study was designed to investigate the potential direct effects of leptin to modulate glucocorticoid production by the adrenal. Human adrenal glands from kidney transplant donors were dissociated, and isolated primary cells were studied in vitro. These cells were preincubated with recombinant leptin (10(-10)-10(-7) M) for 6 or 24 h, and basal or ACTH-stimulated cortisol secretion was subsequently measured. Basal cortisol secretion was unaffected by leptin, but a significant and dose-dependent inhibition of ACTH-stimulated cortisol secretion was observed [down by 29 +/- 0.1% of controls with the highest leptin dose, P < 0.01 vs. CT (unrelated positive control)]. This effect of leptin was also observed in rat primary adrenocortical cells, where leptin inhibited stimulated corticosterone secretion in a dose-dependent manner (down by 46 +/- 0.1% of controls with the highest leptin dose, P < 0.001 vs. CT). These effects of leptin in adrenal cells are likely mediated by the long isoform of the leptin receptor (OB-R), because its transcript was found to be expressed in the adrenal tissue and leptin had no inhibitory effect in adrenal glands obtained from db/db mice. Therefore, leptin inhibits directly stimulated cortisol secretion from human and rat adrenal glands, and this may represent an important mechanism to modulate glucocorticoid levels in various metabolic states.
Resumo:
Transcriptional activity relies on coregulators that modify the chromatin structure and serve as bridging factors between transcription factors and the basal transcription machinery. Using the DE domain of human peroxisome proliferator-activated receptor gamma (PPARgamma) as bait in a yeast two-hybrid screen of a human adipose tissue library, we isolated the scaffold attachment factor B1 (SAFB1/HET/HAP), which was previously shown to be a corepressor of estrogen receptor alpha. We show here that SAFB1 has a very broad tissue expression profile in human and is also expressed all along mouse embryogenesis. SAFB1 interacts in pull-down assays not only with PPARgamma but also with all nuclear receptors tested so far, albeit with different affinities. The association of SAFB1 and PPARgamma in vivo is further demonstrated by fluorescence resonance energy transfer (FRET) experiments in living cells. We finally show that SAFB1 is a rather general corepressor for nuclear receptors. Its change in expression during the early phases of adipocyte and enterocyte differentiation suggests that SAFB1 potentially influences cell proliferation and differentiation decisions.
Resumo:
The etiology of diabetic foot ulceration remains incompletely understood. Among other factors such as foot deformity in the presence of neuropathy, plantar fat pad atrophy has been identified as a contributory factor in diabetic foot ulceration. An association between fat pad atrophy and diabetic foot ulceration has been documented by imaging and histomorphological analysis of the calcaneal fat pad. However, histomorphological analysis of the metatarsal fat pad has not been performed to date. The present study entailed 14 patients with diabetes and 14 nondiabetic controls and was aimed at documenting histomorphological evidence for presumed plantar metatarsal fat pad atrophy in patients with diabetes. Histological stains and computer-assisted planimetry were performed on samples of metatarsal fat obtained during forefoot surgery. The histomorphological and planimetric analyses of adipocyte cross-sectional area and nuclear density demonstrated no differences between patients with diabetes and control patients. Our findings demonstrate that systemic atrophy of the metatarsal fat pad is not present in the diabetic foot and may not explain the structural changes previously proposed by noninvasive imaging. Level of Clinical Evidence: 3.
Resumo:
In adult, bone remodeling is a permanent process, reaching an annual turnover of about 10% of the skeleton. Bone remodeling requires the sequential and coordinated actions of the hematopoietic origin osteoclasts, to remove bone and the mesenchymal origin osteoblasts to replace it. An increased level of bone resorption is the primary cause of age-related bone loss often resulting in osteopenia, and is the major cause of osteoporosis.¦Peroxisome proliferator-activated receptors (PPARs), which are expressed in three isotypes, PPARa, PPARp and PPARy, are ligand-activated transcription factors that control many cellular and metabolic processes, more particularly linked to lipid metabolism. In bone, previous works has shown that PPARy inhibits osteogenesis by favoring adipogenesis from common mesenchymal progenitors. In addition, the pro-osteoclastogenesis activity of PPARy results in an increased bone resorption. Accordingly, treatment with PPARy agonist such as the anti-diabetic drug TZD causes bone loss and accumulation of marrow adiposity in mice as well as in postmenopausal women. The aim of the present thesis work was to elucidate the PPARs functions in bone physiology.¦The initial characterization of the PPARP" bone phenotype mainly revealed a decreased BMD. In vitro studies exploring the potency of mesenchymal stem cells to differentiate in osteoblast showed no differences depending on the genotype. However, we could demonstrate an effect of PPARp in partially inhibiting osteoclastogenesis. These results are further sustained by a study made in collaboration with the group of Dr Kronke, which showed an impressive protection against ovariectomy-generated bone loss when the females are treated with a PPARp agonist.¦Observations in PPARy null mice are more complex. The lab has recently been able to generate mice carrying a total deletion of PPARy. Intriguingly, the exploration of the bone phenotype of these mice revealed paradoxical findings. Whereas short bones such as vertebrae exhibit an elevated BMD as expected, long bones (tibia and femur) are clearly osteoporotic. According to their activity when set in culture, osteoblast differentiation normally occurs. Indeed the phenotype can be mainly attributed to a high density of osteoclasts in the cortical bone of PPARy null mice, associated to large bone resorption areas.¦Our explorations suggest a mechanism that involves regulatory processes linking osteoclastogenesis to adipogenesis, the latter being totally absent in PPARy null mice. Indeed, the lack of adipose tissue creates a favorable niche for osteoclastogenesis since conditioned medium made from differentiated adipocyte 3T3L1 inhibited osteoclastogenesis from both PPARy-/- and WT cells. Thus, adipokines deficiency in PPARy-/- mice contributes to de- repress osteoclastogenesis. Using specific blocking antibody, we further identified adiponectin as the major player among dozens of adipokines. Using flow cytometry assay, we explored the levels at which the osteoclastic commitment was perturbed in the bone marrow of PPARy-/- mice. Intriguingly, we observe a general decrease for hematopoietic stem cell and lineage progenitors but increased proportion of osteoclast progenitor in PPARy-/- bone marrow. The general decrease of HSC in the bone marrow is however largely compensated by an important extra-medullary hematopoeisis, taking place in the liver and in the spleen.¦These specific characteristics emphasize the key role of PPARy on a cross road of osteogenesis, adipogenesis and hematopoiesis/osteoclastogenesis. They underline the complexity of the bone marrow niche, and demonstrate the inter-dependance of different cell types in defining bone homeostasis, that may be overseen when experimental design single out pure cell populations.¦Chez l'adulte, même après la fin de la croissance, le renouvellement des os se poursuit et porte sur environ 10% de l'ensemble du squelette adulte, par année. Ce renouvellement implique à la fois des mécanismes séquentiels et coordonnés des ostéoclastes d'origine hématopoïetique, qui dégradent l'os, et des ostéoblastes d'origine mésenchymale, qui permettent la régénération de l'os. La perte en densité osseuse due à l'âge entraîne un fort niveau de résorption, conduisant souvent à une ostéopénie, elle-même cause de l'ostéoporose.¦Les trois isotypes PPAR (Peroxisome proliferator-activated receptor, PPARa, PPARp, et PPARy) sont des récepteurs nucléaires qui contrôlent de nombreux mécanismes cellulaires et métaboliques, plus particulièrement liés au métabolisme lipidique. Au niveau osseux, des travaux précédents ont montré que PPARy inhibe l'ostéoblastogenèse en favorisant la formation d'adipocytes à partir de la cellule progénitrice commune. De plus, l'activité pro- ostéoclastogénique de PPARy induit une résorption osseuse accrue. Condormément à ces observations, les patients diabétiques traités par les thiazolidinediones qui agissent sur PPARy, ont un risque accrue d'ostéoporose liée à une perte osseuse accrue et un accroissement de l'adiposité au niveau de la moelle osseuse. Dans ce contexte, l'objectif de mon travail de thèse a été d'élucider le rôle des PPAR dans la physiologie osseuse, en s'appuyant sur le phénotype des souris porteuses de mutation pour PPAR.¦La caractérisation initiale des os des souris porteuses d'une délétion de ΡΡΑΕφ a principalement révélé une diminution de la densité minérale osseuse (DMO). Alors que l'ostéogenèse n'est pas significativement altérée chez ces souris, l'ostéoclastogenèse est elle augmentée, suggérant un rôle modérateur de ce processus par ΡΡΑΕΙβ. Ces résultats sont par ailleurs soutenus par une étude menée par le groupe du Dr Krônke en collaboration avec notre groupe, et qui monte une protection très importante des souris traitées par un activateur de PPARP contre l'ostéoporose provoquée par l'ovariectomie.¦Les observations concernant PPARy donnent des résultats plus complexes. Le laboratoire a en effet été capable récemment de générer des souris portant une délétion totale de PPARy. Alors que les os courts chez ces souris présentent une augmentation de la DMO, comme attendu, les os longs sont clairement ostéoporotiques. Ce phénotype corrèle avec une densité élevée d'ostéoclastes dans l'os cortical de ces os longs. Deux processus semblent contribuer à ce phénotype. En premier lieu, nous démontrons qu'un milieu conditionné provenant de cultures de cellules 3T3-L1 différenciées en adipocytes contiennent une forte activité inhibitrice d'osteoclastogenesis. L'utilisation d'anticorps neutralisant permet d'identifier l'adiponectine comme l'un des facteurs principaux de cette inhibition. Les souris PPARy étant totalement dépourvues d'adipocytes et donc de tissu adipeux, la sécrétion locale d'adiponectine dans la moelle osseuse est donc également absente, entraînant une désinhibition de l'ostéoclastogenèse. En second lieu, des analyses par FACS révèle une proportion accrue des cellules progénitrices d'ostéoclastes dans la moelle osseuse. Cela s'accompagne par une diminution globale des cellules souches hématopoïétiques, qui est cependant largement compensée par une importante hématopoëise extra-médullaire, dans le foie comme dans la rate.¦L'ensemble de notre travail montre toute l'importance de PPARy au carrefour de l'ostéogenèse, adipogenèse, et hématopoëise/osteoclastogenèse. Il souligne la complexité de la niche que représente la moelle osseuse et démontre l'inter-dépendance des différents types cellulaires définissant l'homéostasie osseuse, complexité qui peut facilement être masqué lorsque le travail expérimental se concentre sur le comportement d'un type cellulaire donné.
Resumo:
Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor involved in diverse biological processes including adipocyte differentiation, glucose homeostasis, and inflammatory responses. Analyses of PPARγ knockout animals have been so far preempted by the early embryonic death of PPARγ-/- embryos as a consequence of the severe alteration of their placental vasculature. Using Sox2Cre/PPARγL2/L2 mice, we obtained fully viable PPARγ-null mice through specific and total epiblastic gene deletion, thereby demonstrating that the placental defect is the unique cause of PPARγ-/- embryonic lethality. The vasculature defects observed in PPARγ-/- placentas at embryonic d 9.5 correlated with an unsettled balance of pro- and antiangiogenic factors as demonstrated by increased levels of proliferin (Prl2c2, PLF) and decreased levels of proliferin-related protein (Prl7d1, PRP), respectively. To analyze the role of PPARγ in the later stage of placental development, when its expression peaks, we treated pregnant wild-type mice with the PPARγ agonist rosiglitazone. This treatment resulted in a disorganization of the placental layers and an altered placental microvasculature, accompanied by the decreased expression of proangiogenic genes such as Prl2c2, vascular endothelial growth factor, and Pecam1. Together our data demonstrate that PPARγ plays a pivotal role in controlling placental vascular proliferation and contributes to its termination in late pregnancy.
Resumo:
ABSTRACT: BACKGROUND: Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) of marine origin exert multiple beneficial effects on health. Our previous study in mice showed that reduction of adiposity by LC n-3 PUFA was associated with both, a shift in adipose tissue metabolism and a decrease in tissue cellularity. The aim of this study was to further characterize the effects of LC n-3 PUFA on fat cell proliferation and differentiation in obese mice. METHODS: A model of inducible and reversible lipoatrophy (aP2-Cre-ERT2 PPARgammaL2/L2 mice) was used, in which the death of mature adipocytes could be achieved by a selective ablation of peroxisome proliferator-activated receptor gamma in response to i.p. injection of tamoxifen. Before the injection, obesity was induced in male mice by 8-week-feeding a corn oil-based high-fat diet (cHF) and, subsequently, mice were randomly assigned (day 0) to one of the following groups: (i) mice injected by corn-oil-vehicle only, i.e."control" mice, and fed cHF; (ii) mice injected by tamoxifen in corn oil, i.e. "mutant" mice, fed cHF; (iii) control mice fed cHF diet with 15% of dietary lipids replaced by LC n-3 PUFA concentrate (cHF+F); and (iv) mutant mice fed cHF+F. Blood and tissue samples were collected at days 14 and 42. RESULTS: Mutant mice achieved a maximum weight loss within 10 days post-injection, followed by a compensatory body weight gain, which was significantly faster in the cHF as compared with the cHF+F mutant mice. Also in control mice, body weight gain was depressed in response to dietary LC n-3 PUFA. At day 42, body weights in all groups stabilized, with no significant differences in adipocyte size between the groups, although body weight and adiposity was lower in the cHF+F as compared with the cHF mice, with a stronger effect in the mutant than in control mice. Gene expression analysis documented depression of adipocyte maturation during the reconstitution of adipose tissue in the cHF+F mutant mice. CONCLUSION: Dietary LC n-3 PUFA could reduce both hypertrophy and hyperplasia of fat cells in vivo. Results are in agreement with the involvement of fat cell turnover in control of adiposity.
Resumo:
PPARs (peroxisome-proliferator-activated receptors) alpha, beta/delta and gamma are a group of transcription factors that are involved in numerous processes, including lipid metabolism and adipogenesis. By comparing liver mRNAs of wild-type and PPARalpha-null mice using microarrays, a novel putative target gene of PPARalpha, G0S2 (G0/G1 switch gene 2), was identified. Hepatic expression of G0S2 was up-regulated by fasting and by the PPARalpha agonist Wy14643 in a PPARalpha-dependent manner. Surprisingly, the G0S2 mRNA level was highest in brown and white adipose tissue and was greatly up-regulated during mouse 3T3-L1 and human SGBS (Simpson-Golabi-Behmel syndrome) adipogenesis. Transactivation, gel shift and chromatin immunoprecipitation assays indicated that G0S2 is a direct PPARgamma and probable PPARalpha target gene with a functional PPRE (PPAR-responsive element) in its promoter. Up-regulation of G0S2 mRNA seemed to be specific for adipogenesis, and was not observed during osteogenesis or myogenesis. In 3T3-L1 fibroblasts, expression of G0S2 was associated with growth arrest, which is required for 3T3-L1 adipogenesis. Together, these data indicate that G0S2 is a novel target gene of PPARs that may be involved in adipocyte differentiation.