35 resultados para 3-14


Relevância:

60.00% 60.00%

Publicador:

Resumo:

AIM: To estimate the statistical interactions between alcohol policy strength and the person-related risk factors of sensation-seeking, antisocial personality disorder and attention-deficit/hyperactivity disorder related to heavy alcohol use. DESIGN: Cross-sectional survey. SETTING: Young Swiss men living within 21 jurisdictions across Switzerland. PARTICIPANTS: A total of 5701 Swiss men (mean age 20 years) participating in the Cohort Study on Substance Use Risk Factors (C-SURF). MEASUREMENTS: Outcome measures were alcohol use disorder (AUD) as defined in the DSM-5 and risky single-occasion drinking (RSOD). Independent variables were sensation-seeking, antisocial personality disorder (ASPD), attention-deficit/hyperactivity disorder (ADHD) and an index of alcohol policy strength. FINDINGS: Alcohol policy strength was protective against RSOD [odds ratio (OR) = 0.91 (0.84-0.99)], while sensation-seeking and ASPD were risk factors for both RSOD [OR = 1.90 (1.77-2.04); OR = 1.69 (1.44-1.97)] and AUD [OR = 1.58 (1.47-1.71); OR = 2.69 (2.30-3.14)] and ADHD was a risk factor for AUD [OR = 1.08 (1.06-1.10)]. Significant interactions between alcohol policy strength and sensation-seeking were identified for RSOD [OR = 1.06 (1.01-1.12)] and AUD [OR = 1.06 (1.01-1.12)], as well as between alcohol policy strength and ASPD for both RSOD [OR = 1.17 (1.03-1.31)] and AUD [OR = 1.15 (1.02-1.29)]. These interactions indicated that the protective effects of alcohol policy strength on RSOD and AUD were lost in men with high levels of sensation-seeking or an ASPD. No interactions were detected between alcohol policy strength and ADHD. CONCLUSION: Stronger alcohol legislation protects against heavy alcohol use in young Swiss men, but this protective effect is lost in individuals with high levels of sensation-seeking or having an antisocial personality disorder.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cardiac ventricular morphogenesis is a key developmental stage during which the ventricles grow considerably in size, but the transcriptional pathways controlling this process remains poorly understood. 14-3-3_ is a member of a conserved protein family that regulates a wide range of processes such as transcription, apoptosis and proliferation by binding to the phospho-serine/threonine residues of its target proteins. We found that deletion of the Ywhae gene (encoding 14-3-3_) in mice leads to abnormal ventricular morphogenesis and an embryonic cardiomyopathy (Cieslik KA et al, Circ. Res. 2008, abstract). Interestingly, we recently showed in cultured cells that the Ywhae gene is regulated directly by peroxisome proliferator-activated receptor _ (PPAR_) (Brunelli L et al, Circ. Res. 2007), a ligand-inducible nuclear receptor that controls energy metabolism and development. Postnatal cardiac-specific deletion of the Ppard gene in mice causes a lethal dilated cardiomyopathy, but it is still unknown whether PPAR_ regulates genes involved in heart development. We hypothesized that the expression of the Ywhae gene is responsive to PPAR_ during heart development. We confirmed that PPAR_ is expressed in the heart during development, and found higher expression at E10.5 compared to later gestational ages. We showed by immunofluorescence that a PPAR_ agonist (50 _M L-165,041 for 24 hr) upregulates 14-3-3_ in primary cardiomyocytes. We showed that when P19CL6 cells are driven towards cardiomyocyte lineage by dimethyl sulfoxide (DMSO), 14-3-3_ levels increase 4-fold, while L-165,041 treatment increases levels by an additional 50%. Based on previous work in mice (Leibowitz MD et al, FEBS Lett. 2000; Letavernier E et al, J. Am. Soc. Nephrol. 2005), we tested the response of Ywhae to PPAR_ in vivo . We fed 30 mg/kg/day L-165,041 to 14-3-3__/_ adult pregnant mice for 3 days starting at E9.5 and assessed Ywhae mRNA levels in embryonic hearts at E12.5. Baseline mRNA levels in Ywhae_/_ hearts were double that of Ywhae_/ hearts, while L-165,041 upregulated Ywhae mRNA levels in both Ywhae_/_ and Ywhae_/ hearts by 65%. These results indicate that Ywhae responds to PPAR_ in vivo, and suggest that PPAR_ regulates Ywhae during ventricular morphogenesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A-kinase anchoring proteins (AKAPs) target the cAMP-regulated protein kinase (PKA) to its physiological substrates. We recently identified a novel anchoring protein, called AKAP-Lbc, which functions as a PKA-targeting protein as well as a guanine nucleotide exchange factor (GEF) for RhoA. We demonstrated that AKAP-Lbc Rho-GEF activity is stimulated by the alpha subunit of the heterotrimeric G protein G12. Here, we identified 14-3-3 as a novel regulatory protein interacting with AKAP-Lbc. Elevation of the cellular concentration of cAMP activates the PKA holoenzyme anchored to AKAP-Lbc, which phosphorylates the anchoring protein on the serine 1565. This phosphorylation event induces the recruitment of 14-3-3, which inhibits the Rho-GEF activity of AKAP-Lbc. AKAP-Lbc mutants that fail to interact with PKA or with 14-3-3 show a higher basal Rho-GEF activity as compared to the wild-type protein. This suggests that, under basal conditions, 14-3-3 maintains AKAP-Lbc in an inactive state. Therefore, while it is known that AKAP-Lbc activity can be stimulated by Galpha12, in this study we demonstrated that it is inhibited by the anchoring of both PKA and 14-3-3.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

14-3-3 is a family of conserved regulatory proteins that bind to a multitude of functionally diverse signalling proteins. Various genetic studies and gene expression and proteomic analyses have involved 14-3-3 proteins in schizophrenia (SZ). On the other hand, studies about the status of these proteins in major depressive disorder (MD) are still missing. Immunoreactivity values of cytosolic 14-3-3β and 14-3-3ζ proteins were evaluated by Western blot in prefrontal cortex (PFC) of subjects with schizophrenia (SZ; n=22), subjects with major depressive disorder (MD; n=21) and age-, gender- and postmortem delay-matched control subjects (n=52). The modulation of 14-3-3β and 14-3-3ζ proteins by psychotropic medication was also assessed. The analysis of both proteins in SZ subjects with respect to matched control subjects showed increased 14-3-3β (Δ=33±10%, p<0.05) and 14-3-3ζ (Δ=29±6%, p<0.05) immunoreactivity in antipsychotic-free but not in antipsychotic-treated SZ subjects. Immunoreactivity values of 14-3-3β and 14-3-3ζ were not altered in MD subjects. These results show the specific up-regulation of 14-3-3β and 14-3-3ζ proteins in PFC of SZ subjects and suggest a possible down-regulation of both proteins by antipsychotic treatment.