54 resultados para ß-cell precursors
Resumo:
CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg) play an important role in the induction and maintenance of immune tolerance. Although adoptive transfer of bulk populations of Treg can prevent or treat T cell-mediated inflammatory diseases and transplant allograft rejection in animal models, optimal Treg immunotherapy in humans would ideally use antigen-specific rather than polyclonal Treg for greater specificity of regulation and avoidance of general suppression. However, no robust approaches have been reported for the generation of human antigen-specific Treg at a practical scale for clinical use. Here, we report a simple and cost-effective novel method to rapidly induce and expand large numbers of functional human alloantigen-specific Treg from antigenically naive precursors in vitro using allogeneic nontransformed B cells as stimulators. By this approach naive CD4(+)CD25(-) T cells could be expanded 8-fold into alloantigen-specific Treg after 3 weeks of culture without any exogenous cytokines. The induced alloantigen-specific Treg were CD45RO(+)CCR7(-) memory cells, and had a CD4(high), CD25(+), Foxp3(+), and CD62L (L-selectin)(+) phenotype. Although these CD4(high)CD25(+)Foxp3(+) alloantigen-specific Treg had no cytotoxic capacity, their suppressive function was cell-cell contact dependent and partially relied on cytotoxic T lymphocyte antigen-4 expression. This approach may accelerate the clinical application of Treg-based immunotherapy in transplantation and autoimmune diseases.
Resumo:
The effect of exendin-(9-39), a described antagonist of the glucagon-like peptide-1 (GLP-1) receptor, was evaluated on the formation of cAMP- and glucose-stimulated insulin secretion (GSIS) by the conditionally immortalized murine betaTC-Tet cells. These cells have a basal intracellular cAMP level that can be increased by GLP-1 with an EC50 of approximately 1 nM and can be decreased dose dependently by exendin-(9-39). This latter effect was receptor dependent, as a beta-cell line not expressing the GLP-1 receptor was not affected by exendin-(9-39). It was also not due to the endogenous production of GLP-1, because this effect was observed in the absence of detectable preproglucagon messenger RNA levels and radioimmunoassayable GLP-1. Importantly, GSIS was shown to be sensitive to this basal level of cAMP, as perifusion of betaTC-Tet cells in the presence of exendin-(9-39) strongly reduced insulin secretion. This reduction of GSIS, however, was observed only with growth-arrested, not proliferating, betaTC-Tet cells; it was also seen with nontransformed mouse beta-cells perifused in similar conditions. These data therefore demonstrated that 1) exendin-(9-39) is an inverse agonist of the murine GLP-1 receptor; 2) the decreased basal cAMP levels induced by this peptide inhibit the secretory response of betaTC-Tet cells and mouse pancreatic islets to glucose; 3) as this effect was observed only with growth-arrested cells, this indicates that the mechanism by which cAMP leads to potentiation of insulin secretion is different in proliferating and growth-arrested cells; and 4) the presence of the GLP-1 receptor, even in the absence of bound peptide, is important for maintaining elevated intracellular cAMP levels and, therefore, the glucose competence of the beta-cells.
Resumo:
We have explored in vitro the mechanism by which human immunodeficiency virus, type 1 (HIV-1) induces cell death of primary CD4+ T cells in conditions of productive infection. Although HIV-1 infection primed phytohemagglutinin-activated CD4+ T cells for death induced by anti-CD95 antibody, T cell death was not prevented by a CD95-Fc decoy receptor, nor by decoy receptors of other members of the TNFR family (TNFR1/R2, TRAILR1/R2/OPG, TRAMP) or by various blocking antibodies, suggesting that triggering of death receptors by their cognate ligands is not involved in HIV-induced CD4 T cell death. HIV-1 induced CD4 T cell shrinkage, cell surface exposure of phosphatidylserine, loss of mitochondrial membrane potential (Deltapsim), and mitochondrial release of cytochrome c and apoptosis-inducing factor. A typical apoptotic phenotype (nuclear chromatin condensation and fragmentation) only occurred in around half of the dying cells. Treatment with benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, a broad spectrum caspase inhibitor, prevented nuclear chromatin condensation and fragmentation in HIV-infected CD4+ T cells and in a cell-free system (in which nuclei were incubated with cytoplasmic extracts from the HIV-infected CD4+ T cells). Nevertheless, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone did not prevent mitochondrial membrane potential loss and cell death, suggesting that caspases are dispensable for HIV-mediated cell death. Our findings suggest a major role of the mitochondria in the process of CD4 T cell death induced by HIV, in which targeting of Bax to the mitochondria may be involved.
Resumo:
Arenaviruses are rodent-born world-wide distributed negative strand RNA viruses that comprise a number of important human pathogens including Lassa virus (LASV) which causes more than 3 00'000 infections annually in Western Africa. Lymphocytic choriomeningitis virus (LCMV) is the prototypic member of the arenavirus family, which is divided in two major subgroups according to serological properties and geographical distribution, the Old World and New World arenaviruses. The envelope glycoprotein precursors (GPCs) of arenaviruses have to undergo proteolytic processing to acquire biological function and to be incorporated into progeny virions. A cellular enzyme is responsible for this processing: the Subtilisin Kexin Isozyme-1 or Site-1 protease (SKI- 1/S1P). In this thesis we have studied the relationship between SKI-1/S1P and the envelope GPs of arenaviruses. In a first project, we investigated the molecular interactions between SKI-1/SIP and arenavirus GPCs. Using SKI-1/SIP mutants, we confirmed previously published observations locating LCMV GPC and LASV GPC processing in the Late Golgi/TGN and ER/cis-Golgi, respectively. A single mutation in the cleavage site of LCMV was sufficient to re-locate SKI- 1/SIP-mediated processing from the late Golgi/TGN to the ER/cis-Golgi. We then demonstrated that the transmembrane domain, the C-terminal tail and the phosphorylation sites of SKI-1/S1P are dispensable for GPC processing. Additionally we identified a SKI- 1/S1P mutant defective for autoprocessing at site Β, B' that was selectively impaired in processing of viral GPCs but not cellular substrates. We also showed that a soluble variant of SKI-1/SIΡ was unable to cleave envelope GPs at the cell surface when added in the culture medium. This study highlighted a new target for small molecule inhibitors that would specifically impair GPC but not cellular substrate processing. In a second project, we identified and characterized two residues: LASV GPC Y253 and SKI-1/S1P Y285 that are important for the SKI-1/SIP-mediated LASV GPC cleavage. An alignment of GPC sequences revealed a conserved aromatic residue in P7 position in the GPCs of Old World and Clade C of New World arenaviruses. Mutations in GPC at position P7 impaired processing efficiency. In SKI-1/S1P, mutating Y285 into A negatively affected processing of substrates containing aromatic residues in P7, without affecting others. This property could be used to develop specific drugs targeting SKI-1/SIP-mediated cleavage of LASV GPC without affecting cellular substrates. As a third project we studied the role of the SKI-1/SIP-mediated processing and the unusual stable signal peptide (SSP) for the folding and secretion of soluble forms of the ectodomain of LASV and LCMV glycoproteins. We provide evidence that the transmembrane domain and the cytosolic tail are crucial for the stability of the prefusion conformation of arenavirus GP and that the SSP is required for transport and processing of full-length GP, but not the soluble ectodomain per se. Taken together, these results will lead to a better understanding of the complex interactions between arenavirus GPCs and SKI-1/S IP, paving the avenue for the development of novel anti-arenaviral therapeutics. - Les Arenavirus sont des virus à ARN négatif distribués mondialement et portés par les rongeurs. Cette famille de virus comprend des virus hautement pathogènes pour l'homme comme le virus de Lassa (LASV) qui cause plus de 300Ό00 infections par année en Afrique de l'Ouest. Le virus de la chorioméningite lymphocytaire (LCMV) est le représentant de cette famille qui est divisée en deux sous-groupes selon des critères sérologiques et de distributions géographiques: arenavirus du Nouveau et de l'Ancien monde. Les glycoprotéines d'enveloppe de ces virus (GPCs) doivent être clivées pour être incorporées dans le virus et ainsi lui permettre d'être infectieux. Une enzyme cellulaire est responsable de ce clivage : la Subtilisin Kexin Isozyme-1 ou protéase Site-1 (SKI-l/SlP). Dans cette thèse, nous avons étudié la relation entre cette enzyme cellulaire et les GPs des arenavirus. Dans un premier temps, nous avons étudié les interactions moléculaires entre SKI- 1/S1P et GPC. A l'aide de mutants de SKI-l/SlP, nous avons confirmé des résultats précédemment publiés montrant que les glycoprotéines d'enveloppe de LASV sont clivés dans le réticulum endoplasmique/cis-Golgi alors que celles de LCMV sont clivées dans le Golgi tardif/TGN. Une seule mutation dans le site de clivage de la glycoprotéine de LCMV est suffisante pour changer le compartiment cellulaire dans lequel est clivée cette glycoprotéine. Ensuite, nous avons démontré que le domaine transmembranaire, la partie cytosolique C-terminale ainsi que les sites de phosphorylations de cette enzyme ne sont pas indispensables pour permettre le clivage de GPC. De plus, nous avons identifié un mutant de SKI-l/SlP dans lequel Γ autoprocessing au site B,B' est impossible, incapable de cliver GPC mais toujours pleinement fonctionnelle envers ses substrats cellulaires. Nous avons également démontré qu'une forme soluble de SKI-l/SlP ajoutée dans le milieu de culture n'est pas capable de couper GPC à la surface de la cellule. Cette étude a défini une nouvelle cible potentielle pour un médicament qui inhiberait le clivage des glycoprotéines des arenavirus sans affecter les processus normaux de la cellule. Dans un second project, nous avons identifié deux acides aminés, LASV GPC Y253 et SKI-l/SlP Y285, qui sont important pour le clivage de LASV GPC. Un alignement des séquences de clivage des GPCs a montré qu'un résidu aromatique est conservé en position P7 du site de clivage chez tous les arenavirus de l'Ancien monde et dans le clade C des arenavirus du Nouveau monde. Une mutation de cet acide aminée dans GPC réduit l'efficacité de clivage par SKI-l/SlP. Mutation de la tyrosine 285 de SKI-l/SlP en alanine affecte négativement le clivage des substrats contenant un résidu aromatique en position P7 sans affecter les autres. Cette propriété pourrait être utilisée pour le développement de médicaments spécifiques ciblant le clivage de GPC. Finalement, nous avons étudié le rôle du processing accomplit par SKI-l/SlP et du signal peptide pour le pliage et la sécrétion de formes solubles des glycoprotéines de LASV et LCMV. Nous avons montré que le domaine transmembranaire et la partie cytosolique de GP sont crucials pour la stabilité de la conformation pre-fusionnelle des GPs et que SSP est nécessaire pour le transport et le processing de GP, mais pas de son ecto-domaine soluble. En conclusion, les résultats obtenus durant cette thèse permettrons de mieux comprendre les interactions complexes entre SKI-l/SlP et les glycoprotéines des arenavirus, ouvrant le chemin pour le développement de nouveaux médicaments anti-arénaviraux.
Resumo:
Thymic T cell lineage commitment is dependent on Notch1 (N1) receptor-mediated signaling. Although the physiological ligands that interact with N1 expressed on thymic precursors are currently unknown, in vitro culture systems point to Delta-like 1 (DL1) and DL4 as prime candidates. Using DL1- and DL4-lacZ reporter knock-in mice and novel monoclonal antibodies to DL1 and DL4, we show that DL4 is expressed on thymic epithelial cells (TECs), whereas DL1 is not detected. The function of DL4 was further explored in vivo by generating mice in which DL4 could be specifically inactivated in TECs or in hematopoietic progenitors. Although loss of DL4 in hematopoietic progenitors did not perturb thymus development, inactivation of DL4 in TECs led to a complete block in T cell development coupled with the ectopic appearance of immature B cells in the thymus. These immature B cells were phenotypically indistinguishable from those developing in the thymus of conditional N1 mutant mice. Collectively, our results demonstrate that DL4 is the essential and nonredundant N1 ligand responsible for T cell lineage commitment. Moreover, they strongly suggest that N1-expressing thymic progenitors interact with DL4-expressing TECs to suppress B lineage potential and to induce the first steps of intrathymic T cell development.
Resumo:
It is well established that Notch signaling plays a critical role at multiple stages of T cell development and activation. However, detailed analysis of the cellular and molecular events associated with Notch signaling in T cells is hampered by the lack of reagents that can unambiguously measure cell surface Notch receptor expression. Using novel rat mAbs directed against the extracellular domains of Notch1 and Notch2, we find that Notch1 is already highly expressed on common lymphoid precursors in the bone marrow and remains at high levels during intrathymic maturation of CD4(-)CD8(-) thymocytes. Notch1 is progressively down-regulated at the CD4(+)CD8(+) and mature CD4(+) or CD8(+) thymic stages and is expressed at low levels on peripheral T cells. Immunofluorescence staining of thymus cryosections further revealed a localization of Notch1(+)CD25(-) cells adjacent to the thymus capsule. Notch1 was up-regulated on peripheral T cells following activation in vitro with anti-CD3 mAbs or infection in vivo with lymphocytic chorio-meningitis virus or Leishmania major. In contrast to Notch1, Notch2 was expressed at intermediate levels on common lymphoid precursors and CD117(+) early intrathymic subsets, but disappeared completely at subsequent stages of T cell development. However, transient up-regulation of Notch2 was also observed on peripheral T cells following anti-CD3 stimulation. Collectively our novel mAbs reveal a dynamic regulation of Notch1 and Notch2 surface expression during T cell development and activation. Furthermore they provide an important resource for future analysis of Notch receptors in various tissues including the hematopoietic system.
Resumo:
The nature and assembly of the chlamydial division septum is poorly defined due to the paucity of a detectable peptidoglycan (PG)-based cell wall, the inhibition of constriction by penicillin and the presence of coding sequences for cell wall precursor and remodelling enzymes in the reduced chlamydial (pan-)genome. Here we show that the chlamydial amidase (AmiA) is active and remodels PG in Escherichia coli. Moreover, forward genetics using an E. coli amidase mutant as entry point reveals that the chlamydial LysM-domain protein NlpD is active in an E. coli reporter strain for PG endopeptidase activity (ΔnlpI). Immunolocalization unveils NlpD as the first septal (cell-wall-binding) protein in Chlamydiae and we show that its septal sequestration depends on prior cell wall synthesis. Since AmiA assembles into peripheral clusters, trimming of a PG-like polymer or precursors occurs throughout the chlamydial envelope, while NlpD targets PG-like peptide crosslinks at the chlamydial septum during constriction.
Resumo:
Recent evidence suggests that the heart possesses a greater regeneration capacity than previously thought. In the present study, we isolated undifferentiated precursors from the cardiac nonmyocyte cell population of neonatal hearts, expanded them in culture, and induced them to differentiate into functional cardiomyocytes. These cardiac precursors appear to express stem cell antigen-1 and demonstrate characteristics of multipotent precursors of mesodermal origin. Following infusion into normal recipients, these cells home to the heart and participate in physiological and pathophysiological cardiac remodeling. Cardiogenic differentiation in vitro and in vivo depends on FGF-2. Interestingly, this factor does not control the number of precursors but regulates the differentiation process. These findings suggest that, besides its angiogenic actions, FGF-2 could be used in vivo to facilitate the mobilization and differentiation of resident cardiac precursors in the treatment of cardiac diseases.
Resumo:
SUMMARYDiabetes is characterized by insulin deficiency that results from the destruction of insulin-secreting pancreatic beta-cells (Type 1), or in part from beta-cell death and insulin secretion defects (Type 2). Therefore, understanding the mechanisms of beta cell neogenesis (to generate unlimited supply of beta cells for T1D transplantation] or identifying the specific genes that favors insulin secretion or beta-cell survival is of great importance for the management of diabetes. The transcriptional repressor RE-1 Silencing Transcription Factor (REST) restricts the expression of a large number of genes containing its binding element, called Repressor Element-1 (RE-1), to neurons and beta cells. To do so, REST is ubiquitously expressed but in neurons and beta cells. To identify these essential genes and their functional significance in beta cells, we have generated transgenic mice that express REST specifically in beta cells under the control of the rat insulin promoter (RIP-REST mice). This resulted in the repression of the RE-1- containing genes in beta cells, and we analyzed the consequences.We first showed that RIP-REST mice were glucose-intolerant because of a defective insulin secretion. To explain this defect, we identified that a subset of the REST target genes were necessary for insulin exocytosis, such as Snap25, Synaptotagmin (Syt) IX, Complexin II, and Ica512, and we further demonstrated that among the identified REST targets, Syt IV and VII were also involved in insulin release. We next analyzed a novel RIP-REST mouse line that featured diabetes and we showed that this defect was due to a major loss of beta-cell mass. To explain this phenotype, we identified REST target genes that were involved in beta-cell survival, such as Ibl, Irs2, Ica512 and Connexin36, and revealed that another REST target, Cdk5r2 is also involved in beta-cell protection. In a third part, we finally suggest that REST may be important for pancreatic endocrine differentiation, since transgenic mice expressing constitutive REST in pancreatic multipotent progenitors show impaired formation of Ngn3-expressing endocrine- committed precursors, and impaired formation of differentiated endocrine cells. Mapping the pattern of REST expression in wild type animals indicates that it is expressed in multipotent progenitors to become then excluded from endocrine cells. Preliminary results suggest that a downregulation of REST would result in relieved expression of at least the Mytl target, favoring subsequent acquisition of the endocrine competence by endocrine precursor cells.Thus, we propose that the REST/RE-1 system is an important feature for beta-cell neogenesis, function and survivalRESUMELe diabète se caractérise par une déficience en insuline qui résulte d'une destruction des cellules bêta (β) pancréatiques sécrétant l'insuline [Type 1], ou à un défaut de sécrétion d'insuline qui peut être associé à la mort des cellules β (Type 2). La compréhension des mécanismes de néogenèse des cellules β, ainsi que l'identification de gènes impliqués dans leur survie et dans le contrôle de la sécrétion d'insuline est donc importante pour le traitement du diabète. Le facteur de transcription de type répresseur, RE-1 Silencing Transcription Factor [REST], contribue à la spécificité d'expression dans les neurones et les cellules β, d'un grand nombre de gènes portant son motif de fixation, le Repressor Element-1 (RE-1). Pour cela, REST est exprimé dans toutes les cellules, sauf dans les neurones et les cellules β. Afin d'identifier les gènes cibles de REST ainsi que leur fonction au sein de la cellule β, nous avons généré des souris transgéniques qui expriment REST spécifiquement dans ces cellules, sous la dépendance du promoteur de l'insuline (souris RIP-REST]. Cette expression ectopique de REST a permis de diminuer l'expression des gènes contrôlés par REST, et d'en analyser les conséquences. Nous avons montré que les souris RIP-REST étaient intolérantes au glucose et que ceci était du à un défaut de sécrétion d'insuline. Pour expliquer ce phénotype, nous avons mis en évidence le fait que des gènes cibles de REST codent pour des protéines importantes pour l'exocytose de l'insuline, comme SNAP25, Synaptotagmin (Syt) IX, Complexin II ou ICA512. De plus, nous avons découvert deux nouvelles cibles de REST impliquées dans la sécrétion d'insuline, Syt IV et Syt VII. Par la suite, nous avons démontré qu'une nouvelle lignée de souris RIP-REST étaient atteintes d'un diabète sévère à cause d'une perte massive des cellules β. La disparition de ces cellules a été expliquée par l'identification de gènes cibles de REST impliqués dans la survie des cellules β, comme Ibl, Irs2, Ica512 ou la Connexine36. De plus, nous avons découvert qu'une nouvelle cible, Cdk5r2, était aussi impliquée dans la survie des cellules β. Dans une dernière partie, nous suggérons, grâce à l'analyse de nouvelles souris transgéniques exprimant constitutivement REST dans les cellules progénitrices du pancréas embryonnaire, que REST empêche la formation des précurseurs de cellules endocrines ainsi que la différenciation de ces cellules. L'analyse de l'expression de REST au cours du développement embryonnaire du pancréas indique que la diminution de l'expression de REST conduit en partie, à l'induction d'un de ses gènes cible Mytl, qui favorise la formation de précurseurs endocrines. Nous proposons donc que le système REST/RE-1 est important pour la génération, la fonction et la survie des cellules β.
Resumo:
T cells belong to two separate lineages based on surface expression of alpha beta or gamma delta T cell receptors (TCR). Since during thymus development TCR beta, gamma, and delta genes rearrange before alpha genes, and gamma delta cells appear earlier than alpha beta cells, it has been assumed that gamma delta cells are devoid of TCR alpha rearrangements. We show here that this is not the case, since mature adult, but not fetal, thymic gamma delta cells undergo VJ alpha rearrangements more frequently than immature alpha beta lineage thymic precursors. Sequence analysis shows VJ alpha rearrangements in gamma delta cells to be mostly (70%) nonproductive. Furthermore, VJ alpha rearrangements in gamma delta cells are transcribed normally and, as shown by analysis of TCR beta-/- mice, occur independently of productive VDJ beta rearrangements. These data are interpreted in the context of a model in which precursors of alpha beta and gamma delta cells differ in their ability to express a functional pre-TCR complex.
Resumo:
Superantigens are bacterial or viral products that polyclonally activate T cells bearing certain TCR beta chain variable elements. For instance, Vbeta8+ T cells proliferate in response to staphylococcal enterotoxin B (SEB) in vivo and then undergo Fas- and/or TNF-mediated apoptosis. We have recently shown that apoptotic SEB-reactive T cells express the B cell marker B220. Here we report the identification of a novel subset of CD4+ B220+ T cell blasts that are the precursors of these apoptotic cells in SEB-immunized mice. Moreover, we show that the CD4- CD8- B220+ T cells that accumulate in the lymphoid organs of Fas ligand-defective gld mice stably express a form of the B220 molecule which exhibits biochemical similarities to that expressed by activated wild-type T cells, but is distinct from that displayed on the surface of B cells. Surprisingly, we also find a population of CD4+ B220+ pre-apoptotic T cells in FasL-defective gld mice, arguing that these cells can be generated in a Fas-independent fashion. Collectively, our data support a general model whereby upon activation, T cells up-regulate B220 before undergoing apoptosis. When the apoptotic mechanisms are defective, T cells presumably down-regulate their coreceptor molecules but retain expression of B220 as they accumulate in lymphoid organs.
Resumo:
Abstract The adult rat brain subventricular zone (SVZ) contains proliferative precursors that migrate to the olfactory bulb (OB) and differentiate into mature neurons. Recruitment of precursors constitutes a potential avenue for brain repair. We have investigated the kinetics and cellular specificity of transgene expression mediated by AAV2/1 vectors (i.e., adeno-associated virus type 2 pseudotyped with AAV1 capsid) in the SVZ. Self-complementary (sc) and single-stranded (ss) AAV2/1 vectors mediated efficient GFP expression, respectively, at 17 and 24 hr postinjection. Transgene expression was efficient in all the rapidly proliferating cells types, that is, Mash1(+) precursors (30% of the GFP(+) cells), Dlx2(+) neuronal progenitors (55%), Olig2(+) oligodendrocyte progenitors (35%), and doublecortin-positive (Dcx(+)) migrating cells (40%), but not in the slowly proliferating glial fibrillary acidic protein-positive (GFAP(+)) neural stem cell pool (5%). Because cell cycle arrest by wild-type and recombinant AAV has been described in primary cultures, we examined SVZ proliferative activity after vector injection. Indeed, cell proliferation was reduced immediately after vector injection but was normal after 1 month. In contrast, migration and differentiation of GFP(+) precursors were unaltered. Indeed, the proportion of Dcx(+) cells was similar in the injected and contralateral hemispheres. Furthermore, 1 month after vector injection into the SVZ, GFP(+) cells, found, as expected, in the OB granular cell layer, were mature GABAergic neurons. In conclusion, the rapid and efficient transgene expression in SVZ neural precursors mediated by scAAV2/1 vectors underlines their potential usefulness for brain repair via recruitment of immature cells. The observed transient precursor proliferation inhibition, not affecting their migration and differentiation, will likely not compromise this strategy.
PPARbeta/delta regulates paneth cell differentiation via controlling the hedgehog signaling pathway.
Resumo:
BACKGROUND & AIMS: All 4 differentiated epithelial cell types found in the intestinal epithelium derive from the intestinal epithelial stem cells present in the crypt unit, in a process whose molecular clues are intensely scrutinized. Peroxisome proliferator-activated receptor beta (PPARbeta) is a nuclear hormone receptor activated by fatty acids and is highly expressed in the digestive tract. However, its function in intestinal epithelium homeostasis is understood poorly. METHODS: To assess the role of PPARbeta in the small intestinal epithelium, we combined various cellular and molecular approaches in wild-type and PPARbeta-mutant mice. RESULTS: We show that the expression of PPARbeta is particularly remarkable at the bottom of the crypt of the small intestine where Paneth cells reside. These cells, which have an important role in the innate immunity, are strikingly affected in PPARbeta-null mice. We then show that Indian hedgehog (Ihh) is a signal sent by mature Paneth cells to their precursors, negatively regulating their differentiation. Importantly, PPARbeta acts on Paneth cell homeostasis by down-regulating the expression of Ihh, an effect that can be mimicked by cyclopamine, a known inhibitor of the hedgehog signaling pathway. CONCLUSIONS: We unraveled the Ihh-dependent regulatory loop that controls mature Paneth cell homeostasis and its modulation by PPARbeta. PPARbeta currently is being assessed as a drug target for metabolic diseases; these results reveal some important clues with respect to the signals controlling epithelial cell fate in the small intestine.
Resumo:
The stromal scaffold of the lymph node (LN) paracortex is built by fibroblastic reticular cells (FRCs). Conditional ablation of lymphotoxin-β receptor (LTβR) expression in LN FRCs and their mesenchymal progenitors in developing LNs revealed that LTβR-signaling in these cells was not essential for the formation of LNs. Although T cell zone reticular cells had lost podoplanin expression, they still formed a functional conduit system and showed enhanced expression of myofibroblastic markers. However, essential immune functions of FRCs, including homeostatic chemokine and interleukin-7 expression, were impaired. These changes in T cell zone reticular cell function were associated with increased susceptibility to viral infection. Thus, myofibroblasic FRC precursors are able to generate the basic T cell zone infrastructure, whereas LTβR-dependent maturation of FRCs guarantees full immunocompetence and hence optimal LN function during infection.
Resumo:
Tissue-targeted expression is of major interest for studying the contribution of cellular subpopulations to neurodegenerative diseases. However, in vivo methods to investigate this issue are limited. Here, we report an analysis of the cell specificity of expression of fluorescent reporter genes driven by six neuronal promoters, with the ubiquitous phosphoglycerate kinase 1 (PGK) promoter used as a reference. Quantitative analysis of AcGFPnuc expression in the striatum and hippocampus of rodents showed that all lentiviral vectors (LV) exhibited a neuronal tropism; however, there was substantial diversity of transcriptional activity and cell-type specificity of expression. The promoters with the highest activity were those of the 67 kDa glutamic acid decarboxylase (GAD67), homeobox Dlx5/6, glutamate receptor 1 (GluR1), and preprotachykinin 1 (Tac1) genes. Neuron-specific enolase (NSE) and dopaminergic receptor 1 (Drd1a) promoters showed weak activity, but the integration of an amplification system into the LV overcame this limitation. In the striatum, the expression profiles of Tac1 and Drd1a were not limited to the striatonigral pathway, whereas in the hippocampus, Drd1a and Dlx5/6 showed the expected restricted pattern of expression. Regulation of the Dlx5/6 promoter was observed in a disease condition, whereas Tac1 activity was unaffected. These vectors provide safe tools that are more selective than others available, for the administration of therapeutic molecules in the central nervous system (CNS). Nevertheless, additional characterization of regulatory elements in neuronal promoters is still required.