247 resultados para ß-Galactoside-binding lectin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liver fatty-acid-binding protein (L-FABP) is a cytoplasmic polypeptide that binds with strong affinity especially to long-chain fatty acids (LCFAs). It is highly expressed in both the liver and small intestine, where it is thought to have an essential role in the control of the cellular fatty acid (FA) flux. Because expression of the gene encoding L-FABP is increased by both fibrate hypolipidaemic drugs and LCFAs, it seems to be under the control of transcription factors, termed peroxisome-proliferator-activated receptors (PPARs), activated by fibrate or FAs. However, the precise molecular mechanism by which these regulations take place remain to be fully substantiated. Using transfection assays, we found that the different PPAR subtypes (alpha, gamma and delta) are able to mediate the up-regulation by FAs of the gene encoding L-FABP in vitro. Through analysis of LCFA- and fibrate-mediated effects on L-FABP mRNA levels in wild-type and PPARalpha-null mice, we have found that PPARalpha in the intestine does not constitute a dominant regulator of L-FABP gene expression, in contrast with what is known in the liver. Only the PPARdelta/alpha agonist GW2433 is able to up-regulate the gene encoding L-FABP in the intestine of PPARalpha-null mice. These findings demonstrate that PPARdelta can act as a fibrate/FA-activated receptor in tissues in which it is highly expressed and that L-FABP is a PPARdelta target gene in the small intestine. We propose that PPARdelta contributes to metabolic adaptation of the small intestine to changes in the lipid content of the diet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Chronic exposure of pancreatic beta cells to proinflammatory cytokines leads to impaired insulin secretion and apoptosis. ARE/poly(U)-binding factor 1 (AUF1) belongs to a protein family that controls mRNA stability and translation by associating with adenosine- and uridine-rich regions of target messengers. We investigated the involvement of AUF1 in cytokine-induced beta cell dysfunction. METHODS: Production and subcellular distribution of AUF1 isoforms were analysed by western blotting. To test for their role in the control of beta cell functions, each isoform was overproduced individually in insulin-secreting cells. The contribution to cytokine-mediated beta cell dysfunction was evaluated by preventing the production of AUF1 isoforms by RNA interference. The effect of AUF1 on the production of potential targets was assessed by western blotting. RESULTS: MIN6 cells and human pancreatic islets were found to produce four AUF1 isoforms (p42>p45>p37>p40). AUF1 isoforms were mainly localised in the nucleus but were partially translocated to the cytoplasm upon exposure of beta cells to cytokines and activation of the ERK pathway. Overproduction of AUF1 did not affect glucose-induced insulin secretion but promoted apoptosis. This effect was associated with a decrease in the production of the anti-apoptotic proteins, B cell leukaemia/lymphoma 2 (BCL2) and myeloid cell leukaemia sequence 1 (MCL1). Silencing of AUF1 isoforms restored the levels of the anti-apoptotic proteins, attenuated the activation of the nuclear factor-κB (NFκB) pathway, and protected the beta cells from cytokine-induced apoptosis. CONCLUSIONS/INTERPRETATION: Our findings point to a contribution of AUF1 to the deleterious effects of cytokines on beta cell functions and suggest a role for this RNA-binding protein in the early phases of type 1 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the adaptation of natural killer (NK) cells to their major histocompatibility complex (MHC) class I environment we have established a novel mouse model with mosaic expression of H-2D(d) using a Cre/loxP system. In these mice, we noticed that NK cells expressing the inhibitory receptor for D(d), Ly49A, were specifically underrepresented among cells with low D(d) levels. That was due to the acquisition of D(d) molecules by the Ly49A+ NK cells that have lost their D(d) transgene. The uptake of H-2D molecules via the Ly49A receptor was restricted to strong ligands of Ly49A. Surprisingly, when Ly49A+ NK cells were D(d+), uptake of the alternative ligand D(k) was not detectable. Similarly, one anti-Ly49A mAb (A1) bound inefficiently when Ly49A was expressed on D(d+) NK cells. Concomitantly, functional assays demonstrated a reduced capacity of Ly49A to inhibit H-2(b)D(d) as compared with H-2(b) NK cells, rendering Ly49A+ NK cells in D(d+) mice particularly reactive. Minor reductions of D(d) levels and/or increases of activating ligands on environmental cells may thus suffice to abrogate Ly49A-mediated NK cell inhibition. The mechanistic explanation for all these phenomena is likely the partial masking of Ly49A by D(d) on the same cell via a lateral binding site in the H-2D(d) molecule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

STAT transcription factors are expressed in many cell types and bind to similar sequences. However, different STAT gene knock-outs show very distinct phenotypes. To determine whether differences between the binding specificities of STAT proteins account for these effects, we compared the sequences bound by STAT1, STAT5A, STAT5B, and STAT6. One sequence set was selected from random oligonucleotides by recombinant STAT1, STAT5A, or STAT6. For another set including many weak binding sites, we quantified the relative affinities to STAT1, STAT5A, STAT5B, and STAT6. We compared the results to the binding sites in natural STAT target genes identified by others. The experiments confirmed the similar specificity of different STAT proteins. Detailed analysis indicated that STAT5A specificity is more similar to that of STAT6 than that of STAT1, as expected from the evolutionary relationships. The preference of STAT6 for sites in which the half-palindromes (TTC) are separated by four nucleotides (N(4)) was confirmed, but analysis of weak binding sites showed that STAT6 binds fairly well to N(3) sites. As previously reported, STAT1 and STAT5 prefer N(3) sites; however, STAT5A, but not STAT1, weakly binds N(4) sites. None of the STATs bound to half-palindromes. There were no specificity differences between STAT5A and STAT5B.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exogenous administration of glucocorticoids is a widely used and efficient tool to investigate the effects of elevated concentrations of these hormones in field studies. Because the effects of corticosterone are dose and duration-dependent, the exact course of plasma corticosterone levels after exogenous administration needs to be known. We tested the performance of self-degradable corticosterone pellets (implanted under the skin) in elevating plasma corticosterone levels. We monitored baseline (sampled within 3min after capture) total corticosterone levels and investigated potential interactions with corticosteroid-binding-globulin (CBG) capacity and the endogenous corticosterone response to handling in Eurasian kestrel Falco tinnunculus and barn owl Tyto alba nestlings. Corticosterone pellets designed for a 7-day-release in rodents elevated circulating baseline total corticosterone during only 2-3 days compared to placebo-nestlings. Highest levels occurred 1-2days after implantation and levels decreased strongly thereafter. CBG capacity was also increased, resulting in a smaller, but still significant, increase in baseline free corticosterone levels. The release of endogenous corticosterone as a response to handling was strong in placebo-nestlings, but absent 2 and 8 days after corticosterone pellet implantation. This indicates a potential shut-down of the hypothalamo-pituitary-adrenal axis after the 2-3 days of elevated baseline corticosterone levels. 20 days after pellet implantation, the endogenous corticosterone response to handling of nestlings implanted with corticosterone pellets attained similar levels as in placebo-nestlings. Self-degradable pellets proved to be an efficient tool to artificially elevate circulating baseline corticosterone especially in field studies, requiring only one intervention. The resulting peak-like elevation of circulating corticosterone, the concomitant elevation of CBG capacity, and the absence of an endogenous corticosterone response to an acute stressor have to be taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aims of this study were twofold. The first was to investigate the diagnostic performance of two biochemical markers, procalcitonin (PCT) and lipopolysaccharide-binding protein (LBP), considering each individually and then combined, for the postmortem diagnosis of sepsis. We also tested the usefulness of pericardial fluid for postmortem LBP determination. Two study groups were formed, a sepsis-related fatalities group of 12 cases and a control group of 30 cases. Postmortem native CT scans, autopsy, histology, neuropathology, and toxicology as well as other postmortem biochemical investigations were performed in all cases. Microbiological investigations were also carried out in the septic group. Postmortem serum PCT and LBP levels differed between the two groups. Both biomarkers, individually considered, allowed septic states to be diagnosed, whereas increases in both postmortem serum PCT and LBP levels were only observed in cases of sepsis. Similarly, normal PCT and LBP values in postmortem serum were identified only in non-septic cases. Pericardial fluid LBP levels do not correlate with the presence of underlying septic states. No relationship was observed between postmortem serum and pericardial fluid LBP levels in either septic or non-septic groups, or between pericardial fluid PCT and LBP levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methyl-CpG Binding Domain (MBD) proteins are thought to be key molecules in the interpretation of DNA methylation signals leading to gene silencing through recruitment of chromatin remodeling complexes. In cancer, the MBD-family member, MBD2, may be primarily involved in the repression of genes exhibiting methylated CpG at their 5' end. Here we ask whether MBD2 randomly associates methylated sequences, producing chance effects on transcription, or exhibits a more specific recognition of some methylated regions. Using chromatin and DNA immunoprecipitation, we analyzed MBD2 and RNA polymerase II deposition and DNA methylation in HeLa cells on arrays representing 25,500 promoter regions. This first whole-genome mapping revealed the preferential localization of MBD2 near transcription start sites (TSSs), within the region analyzed, 7.5 kb upstream through 2.45 kb downstream of 5' transcription start sites. Probe by probe analysis correlated MBD2 deposition and DNA methylation. Motif analysis did not reveal specific sequence motifs; however, CCG and CGC sequences seem to be overrepresented. Nonrandom association (multiple correspondence analysis, p < 0.0001) between silent genes, DNA methylation and MBD2 binding was observed. The association between MBD2 binding and transcriptional repression weakened as the distance between binding site and TSS increased, suggesting that MBD2 represses transcriptional initiation. This hypothesis may represent a functional explanation for the preferential binding of MBD2 at methyl-CpG in TSS regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipopolysaccharides (LPS, endotoxins) are main constituents of the outer membranes of Gram-negative bacteria, with the 'endotoxic principle' lipid A anchoring LPS into the membrane. When LPS is removed from the bacteria by the action of the immune system or simply by cell dividing, it may interact strongly with immunocompetent cells such as mononuclear cells. This interaction may lead, depending on the LPS concentration, to beneficial (at low) or pathophysiological (at high concentrations) reactions, the latter frequently causing the septic shock syndrome. There is a variety of endogenous LPS-binding proteins. To this class belong lactoferrin (LF) and hemoglobin (Hb), which have been shown to suppress and enhance the LPS-induced cytokine secretion in mononuclear cells, respectively. To elucidate the interaction mechanisms of endotoxins with these proteins, we have investigated in an infrared reflection-absorption spectroscopy (IRRAS) study the interaction of LPS or lipid A monolayers at the air/water interface with LF and Hb proteins, injected into the aqueous subphase. The data are clearly indicative of completely different interaction mechanisms of the endotoxins with the proteins, with the LF acting only at the LPS backbone, whereas Hb incorporates into the lipid monolayer. These data allow an understanding of the different reactivities in the biomedicinal systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Mutations in the ligand-binding domain (LBD) of NR2E3 cause recessively inherited enhanced short wavelength sensitive (S-) cone syndrome (ESCS), Goldmann-Favre syndrome (GFS) and clumped pigmentary retinal degeneration (CPRD). In addition to ligand binding, the LBD contains also essential amino acid sequences for the oligomerization of nuclear receptors. The aim of our studies is to characterize the impact of mutations in the LBD on receptor oligomerization and transcriptional activity of NR2E3. Methods: The different NR2E3 mutants were generated by QuickChange mutagenesis and analyzed in 293T-based transactivation studies and BRET2 (bioluminescence resonance electron transfer) assays. In silico homology modeling of mutant proteins was also performed using available crystallographic data of related nuclear receptors. Results: The mutants p.W234S, p.A256V, p.A256E, p.L263P, p.R309G, p.R311Q, p.R334G, p.L336P, p.L353V, p.R385P and p.M407K, all located in the LBD, showed impaired receptor dimerization at various degrees. Impaired repressor dimerization as assessed by BRET2 assays did not always correlate with impaired repressor function of NR2E3 as assessed by cell-based reporter assays. There were minor differences of transcriptional activity of mutant proteins on mouse S-opsin (opn1sw), mouse cone arrestin (arr3) and human cone arrestin, suggesting that the effect of LBD mutations was independent of the promoter context. Conclusions: Mutational analysis and homology modeling allowed the characterization of potential oligomerization interfaces of the NR2E3 LBD. Additionally, mutations in NR2E3 LBD may cause recessive retinal degenerations by different molecular mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The RsmA family of RNA-binding proteins are global post-transcriptional regulators that mediate extensive changes in gene expression in bacteria. They bind to, and affect the translation rate of target mRNAs, a function that is further modulated by one or more, small, untranslated competitive regulatory RNAs. To gain new insights into the nature of this protein/RNA interaction, we used X-ray crystallography to solve the structure of the Yersinia enterocolitica RsmA homologue. RsmA consists of a dimeric beta barrel from which two alpha helices are projected. From structure-based alignments of the RsmA protein family from diverse bacteria, we identified key amino acid residues likely to be involved in RNA-binding. Site-specific mutagenesis revealed that arginine at position 44, located at the N terminus of the alpha helix is essential for biological activity in vivo and RNA-binding in vitro. Mutation of this site affects swarming motility, exoenzyme and secondary metabolite production in the human pathogen Pseudomonas aeruginosa, carbon metabolism in Escherichia coli, and hydrogen cyanide production in the plant beneficial strain Pseudomonas fluorescens CHA0. R44A mutants are also unable to interact with the small untranslated RNA, RsmZ. Thus, although possessing a motif similar to the KH domain of some eukaryotic RNA-binding proteins, RsmA differs substantially and incorporates a novel class of RNA-binding site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

mRNAs specifying immunoglobulin mu and delta heavy chains are encoded by a single large, complex transcription unit (mu + delta gene). The transcriptional activity of delta gene segments in terminally differentiated, IgM-secreting B lymphocytes is 10-20 times lower than in earlier B-lineage cells expressing delta mRNA. We find that transcription of the mu + delta gene in IgM-secreting murine myeloma cells terminates within a region of 500-1000 nucleotides immediately following the mu membrane (mu m) polyadenylylation site. Transcription decreases only minimally through this region in murine cell lines representative of earlier stages in B-cell development. A DNA fragment containing the mu m polyadenylylation signal gives protein-DNA complexes with different mobilities in gel retardation assays with nuclear extracts from myeloma cells than with nuclear extracts from earlier B-lineage cells. However, using a recently developed "footprinting" procedure in which protein-DNA complexes resolved in gel retardation assays are subjected to nucleolytic cleavage while still in the polyacrylamide gel, we find that the DNA sequences protected by factors from the two cell types are indistinguishable. The factor-binding site on the DNA is located 5' of the mu m polyadenylylation signal AATAAA and includes the 15-nucleotide-long A + T-rich palindrome CTGTAAACAAATGTC. This type of palindromic binding site exhibits orientation-dependent activity consistent with the reported properties of polymerase II termination signals. This binding site is followed by two sets of directly repeated DNA sequences with different helical conformation as revealed by their reactivity with the chemical nuclease 1,10-phenanthroline-copper. The close proximity of these features to the signals for mu m mRNA processing may reflect a linkage of the processes of developmentally regulated mu m polyadenylylation and transcription termination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recognition by the T-cell receptor (TCR) of immunogenic peptides (p) presented by Class I major histocompatibility complexes (MHC) is the key event in the immune response against virus-infected cells or tumor cells. A study of the 2C TCR/SIYR/H-2K(b) system using a computational alanine scanning and a much faster binding free energy decomposition based on the Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) method is presented. The results show that the TCR-p-MHC binding free energy decomposition using this approach and including entropic terms provides a detailed and reliable description of the interactions between the molecules at an atomistic level. Comparison of the decomposition results with experimentally determined activity differences for alanine mutants yields a correlation of 0.67 when the entropy is neglected and 0.72 when the entropy is taken into account. Similarly, comparison of experimental activities with variations in binding free energies determined by computational alanine scanning yields correlations of 0.72 and 0.74 when the entropy is neglected or taken into account, respectively. Some key interactions for the TCR-p-MHC binding are analyzed and some possible side chains replacements are proposed in the context of TCR protein engineering. In addition, a comparison of the two theoretical approaches for estimating the role of each side chain in the complexation is given, and a new ad hoc approach to decompose the vibrational entropy term into atomic contributions, the linear decomposition of the vibrational entropy (LDVE), is introduced. The latter allows the rapid calculation of the entropic contribution of interesting side chains to the binding. This new method is based on the idea that the most important contributions to the vibrational entropy of a molecule originate from residues that contribute most to the vibrational amplitude of the normal modes. The LDVE approach is shown to provide results very similar to those of the exact but highly computationally demanding method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the role of CD8 beta in T cell function, we derived a CD8 alpha/beta-(CD8-/-) T cell hybridoma of the H-2Kd-restricted N9 cytotoxic T lymphocyte clone specific for a photoreactive derivative of the Plasmodium berghei circumsporozoite peptide PbCS 252-260. This hybridoma was transfected either with CD8 alpha alone or together with CD8 beta. All three hybridomas released interleukin 2 upon incubation with L cells expressing Kd-peptide derivative complexes, though CD8 alpha/beta cells did so more efficiently than CD8 alpha/alpha and especially CD8-/- cells. More strikingly, only CD8 alpha/beta cells were able to recognize a weak agonist peptide derivative variant. This recognition was abolished by Fab' fragments of the anti-Kd alpha 3 monoclonal antibody SF1-1.1.1 or substitution of Kd D-227 with K, both conditions known to impair CD8 coreceptor function. T cell receptor (TCR) photoaffinity labeling indicated that TCR-ligand binding on CD8 alpha/beta cells was approximately 5- and 20-fold more avid than on CD8 alpha/a and CD8-/- cells, respectively. SF1-1.1.1 Fab' or Kd mutation D227K reduced the TCR photoaffinity labeling on CD8 alpha/beta cells to approximately the same low levels observed on CD8-/- cells. These results indicate that CD8 alpha/beta is a more efficient coreceptor than CD8alpha/alpha, because it more avidly strengthens TCR-ligand binding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aggregating cell cultures prepared from fetal rat telencephalon express the two subunits [cerebellar soluble lectins (CSL) 1 and 2] of a soluble, mannose-specific endogenous lectin (CSL) in a development-dependent manner. Increased CSL synthesis was found at an early postmitotic stage as well as during the period of maximal myelination. Repetitive treatment of early cultures with epidermal growth factor (EGF, 3nM) caused a great stimulation of CSL biosynthesis. Immunocytochemical studies revealed particularly intense CSL-specific staining in small, EGF-responsive cells, presumably glial cells. Large quantities of CSL-immunoreactive material were found also in the extracellular space and on the external side of the plasma membrane, indicating abundant release of CSL. The present findings suggest that EGF or EGF-related factors in the brain are able to regulate the expression of an endogenous lectin, affecting brain ontogeny.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the interaction of T cell receptor with its ligand, a complex of a major histocompatibility complex molecule and a peptide, we derived H-2Kd-restricted cytolytic T lymphocyte clones from mice immunized with a Plasmodium berghei circumsporozoite peptide (PbCS) 252-260 (SYIPSAEKI) derivative containing photoreactive Nepsilon-[4-azidobenzoyl] lysine in place of Pro-255. This residue and Lys-259 were essential parts of the epitope recognized by these clones. Most of the clones expressed BV1S1A1 encoded beta chains along with specific complementary determining region (CDR) 3beta regions but diverse alpha chain sequences. Surprisingly, all T cell receptors were preferentially photoaffinity labeled on the alpha chain. For a representative T cell receptor, the photoaffinity labeled site was located in the Valpha C-strand. Computer modeling suggested the presence of a hydrophobic pocket, which is formed by parts of the Valpha/Jalpha C-, F-, and G-strands and adjacent CDR3alpha residues and structured to be able to avidly bind the photoreactive ligand side chain. We previously found that a T cell receptor specific for a PbCS peptide derivative containing this photoreactive side chain in position 259 similarly used a hydrophobic pocket located between the junctional CDR3 loops. We propose that this nonpolar domain in these locations allow T cell receptors to avidly and specifically bind epitopes containing non-peptidic side chains.