429 resultados para spectral imaging


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Imaging plays a key role in the detection of a diaphragmatic pathology in utero. US is the screening method, but MRI is increasingly performed. Congenital diaphragmatic hernia is by far the most often diagnosed diaphragmatic pathology, but unilateral or bilateral eventration or paralysis can also be identified. Extralobar pulmonary sequestration can be located in the diaphragm and, exceptionally, diaphragmatic tumors or secondary infiltration of the diaphragm from tumors originating from an adjacent organ have been observed in utero. Congenital abnormalities of the diaphragm impair normal lung development. Prenatal imaging provides a detailed anatomical evaluation of the fetus and allows volumetric lung measurements. The comparison of these data with those from normal fetuses at the same gestational age provides information about the severity of pulmonary hypoplasia and improves predictions about the fetus's outcome. This information can help doctors and families to make decisions about management during pregnancy and after birth. We describe a wide spectrum of congenital pathologies of the diaphragm and analyze their embryological basis. Moreover, we describe their prenatal imaging findings with emphasis on MR studies, discuss their differential diagnosis and evaluate the limits of imaging methods in predicting postnatal outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, technological advances have allowed manufacturers to implement dual-energy computed tomography (DECT) on clinical scanners. With its unique ability to differentiate basis materials by their atomic number, DECT has opened new perspectives in imaging. DECT has been used successfully in musculoskeletal imaging with applications ranging from detection, characterization, and quantification of crystal and iron deposits; to simulation of noncalcium (improving the visualization of bone marrow lesions) or noniodine images. Furthermore, the data acquired with DECT can be postprocessed to generate monoenergetic images of varying kiloelectron volts, providing new methods for image contrast optimization as well as metal artifact reduction. The first part of this article reviews the basic principles and technical aspects of DECT including radiation dose considerations. The second part focuses on applications of DECT to musculoskeletal imaging including gout and other crystal-induced arthropathies, virtual noncalcium images for the study of bone marrow lesions, the study of collagenous structures, applications in computed tomography arthrography, as well as the detection of hemosiderin and metal particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, technological advances have allowed manufacturers to implement dual-energy computed tomography (DECT) on clinical scanners. With its unique ability to differentiate basis materials by their atomic number, DECT has opened new perspectives in imaging. DECT has been successfully used in musculoskeletal imaging with applications ranging from detection, characterization, and quantification of crystal and iron deposits, to simulation of noncalcium (improving the visualization of bone marrow lesions) or noniodine images. Furthermore, the data acquired with DECT can be postprocessed to generate monoenergetic images of varying kiloelectron volts, providing new methods for image contrast optimization as well as metal artifact reduction. The first part of this article reviews the basic principles and technical aspects of DECT including radiation dose considerations. The second part focuses on applications of DECT to musculoskeletal imaging including gout and other crystal-induced arthropathies, virtual noncalcium images for the study of bone marrow lesions, the study of collagenous structures, applications in computed tomography arthrography, as well as the detection of hemosiderin and metal particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whole-body coverage using MRI was developed almost 2 decades ago. The first applications focused on the investigation of the skeleton to detect neoplastic disease, mainly metastases from solid cancers, and involvement by multiple myeloma and lymphoma. But the extensive coverage of the whole musculoskeletal system, combined with the exquisite sensitivity of MRI to tissue alteration in relation to different pathologic conditions, mainly inflammation, has led to the identification of a growing number of indications outside oncology. Seronegative rheumatisms, systemic sclerosis, inflammatory diseases involving muscles or fascias, and multifocal osseous, vascular, or neurologic diseases represent currently validated or emerging indications of whole-body MRI (WB-MRI). We first illustrate the most valuable indications of WB-MRI in seronegative rheumatisms that include providing significant diagnostic information in patients with negative or ambiguous MRI of the sacroiliac joints and the lumbar spine, assessing disease activity in advanced (ankylosed) central disease, and evaluating the peripherally dominant forms of spondyloarthropathy. Then we review the increasing indications of WB-MRI in other rheumatologic and nonneoplastic disorders, underline the clinical needs, and illustrate the role of WB-MRI in the positive diagnosis and evaluation of disease burden, therapeutic decisions, and treatment monitoring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intravoxel incoherent motion (IVIM) MRI is a method to extract microvascular blood flow information out of diffusion-weighted images acquired at multiple b-values. We hypothesized that IVIM can identify the muscles selectively involved in a specific task, by measuring changes in activity-induced local muscular perfusion after exercise. We tested this hypothesis using a widely used clinical maneuver, the lift-off test, which is known to assess specifically the subscapularis muscle functional integrity. Twelve shoulders from six healthy male volunteers were imaged at 3 T, at rest, as well as after a lift-off test hold against resistance for 30 s, 1 and 2 min respectively, in three independent sessions. IVIM parameters, consisting of perfusion fraction (f), diffusion coefficient (D), pseudo-diffusion coefficient D* and blood flow-related fD*, were estimated within outlined muscles of the rotator cuff and the deltoid bundles. The mean values at rest and after the lift-off tests were compared in each muscle using a one-way ANOVA. A statistically significant increase in fD* was measured in the subscapularis, after a lift-off test of any duration, as well as in D. A fD* increase was the most marked (30 s, +103%; 1 min, +130%; 2 min, +156%) and was gradual with the duration of the test (in 10(-3) mm(2) /s: rest, 1.41 ± 0.50; 30 s, 2.86 ± 1.17; 1 min, 3.23 ± 1.22; 2 min, 3.60 ± 1.21). A significant increase in fD* and D was also visible in the posterior bundle of the deltoid. No significant change was consistently visible in the other investigated muscles of the rotator cuff and the other bundles of the deltoid. In conclusion, IVIM fD* allows the demonstration of a task-related microvascular perfusion increase after a specific task and suggests a direct relationship between microvascular perfusion and the duration of the effort. It is a promising method to investigate non-invasively skeletal muscle physiology and clinical perfusion-related muscular disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: We propose the use of a retrospectively gated cine fast spin echo (FSE) sequence for characterization of carotid artery dynamics. The aim of this study was to compare cine FSE measures of carotid dynamics with measures obtained on prospectively gated FSE images. METHODS: The common carotid arteries in 10 volunteers were imaged using two temporally resolved sequences: (i) cine FSE and (ii) prospectively gated FSE. Three raters manually traced a common carotid artery area for all cardiac phases on both sequences. Measured areas and systolic-diastolic area changes were calculated and compared. Inter- and intra-rater reliability were assessed for both sequences. RESULTS: No significant difference between cine FSE and prospectively gated FSE areas were observed (P = 0.36). Both sequences produced repeatable cross-sectional area measurements: inter-rater intraclass correlation coefficient (ICC) = 0.88 on cine FSE images and 0.87 on prospectively gated FSE images. Minimum detectable difference (MDD) in systolic-diastolic area was 4.9 mm(2) with cine FSE and 6.4 mm(2) with prospectively gated FSE. CONCLUSION: This cine FSE method produced repeatable dynamic carotid artery measurements with less artifact and greater temporal efficiency compared with prospectively gated FSE. Magn Reson Med 74:1103-1109, 2015. © 2014 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dixon techniques are part of the methods used to suppress the signal of fat in MRI. They present many advantages compared with other fat suppression techniques including (1) the robustness of fat signal suppression, (2) the possibility to combine these techniques with all types of sequences (gradient echo, spin echo) and different weightings (T1-, T2-, proton density-, intermediate-weighted sequences), and (3) the availability of images both with and without fat suppression from one single acquisition. These advantages have opened many applications in musculoskeletal imaging. We first review the technical aspects of Dixon techniques including their advantages and disadvantages. We then illustrate their applications for the imaging of different body parts, as well as for tumors, neuromuscular disorders, and the imaging of metallic hardware.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To assess the prevalence of PRPH2 in autosomal dominant retinitis pigmentosa (adRP), to report 6 novel mutations, to characterize the biochemical features of a recurrent novel mutation, and to study the clinical features of adRP patients. DESIGN: Retrospective clinical and molecular genetic study. METHODS: Clinical investigations included visual field testing, fundus examination, high-resolution spectral-domain optical coherence tomography (OCT), fundus autofluorescence imaging, and electroretinogram (ERG) recording. PRPH2 was screened by Sanger sequencing in a cohort of 310 French families with adRP. Peripherin-2 protein was produced in yeast and analyzed by Western blot. RESULTS: We identified 15 mutations, including 6 novel and 9 previously reported changes in 32 families, accounting for a prevalence of 10.3% in this adRP population. We showed that a new recurrent p.Leu254Gln mutation leads to protein aggregation, suggesting abnormal folding. The clinical severity of the disease in examined patients was moderate with 78% of the eyes having 1-0.5 of visual acuity and 52% of the eyes retaining more than 50% of the visual field. Some patients characteristically showed vitelliform deposits or macular involvement. In some families, pericentral RP or macular dystrophy were found in family members while widespread RP was present in other members of the same families. CONCLUSIONS: The mutations in PRPH2 account for 10.3% of adRP in the French population, which is higher than previously reported (0%-8%) This makes PRPH2 the second most frequent adRP gene after RHO in our series. PRPH2 mutations cause highly variable phenotypes and moderate forms of adRP, including mild cases, which could be underdiagnosed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose is the primary source of energy for the brain but also an important source of building blocks for proteins, lipids, and nucleic acids. Little is known about the use of glucose for biosynthesis in tissues at the cellular level. We demonstrate that local cerebral metabolic activity can be mapped in mouse brain tissue by quantitatively imaging the biosynthetic products deriving from [U-(13)C]glucose metabolism using a combination of in situ electron microscopy and secondary ion mass-spectroscopy (NanoSIMS). Images of the (13)C-label incorporated into cerebral ultrastructure with ca. 100nm resolution allowed us to determine the timescale on which the metabolic products of glucose are incorporated into different cells, their sub-compartments and organelles. These were mapped in astrocytes and neurons in the different layers of the motor cortex. We see evidence for high metabolic activity in neurons via the nucleus (13)C enrichment. We observe that in all the major cell compartments, such as e.g. nucleus and Golgi apparatus, neurons incorporate substantially higher concentrations of (13)C-label than astrocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasound image reconstruction from the echoes received by an ultrasound probe after the transmission of diverging waves is an active area of research because of its capacity to insonify at ultra-high frame rate with large regions of interest using small phased arrays as the ones used in echocardiography. Current state-of-the-art techniques are based on the emission of diverging waves and the use of delay and sum strategies applied on the received signals to reconstruct the desired image (DW/DAS). Recently, we have introduced the concept of Ultrasound Fourier Slice Imaging (UFSI) theory for the reconstruction of ultrafast imaging for linear acquisition. In this study, we extend this theory to sectorial acquisition thanks to the introduction of an explicit and invertible spatial transform. Starting from a diverging wave, we show that the direct use of UFSI theory along with the application of the proposed spatial transform allows reconstructing the insonified medium in the conventional Cartesian space. Simulations and experiments reveal the capacity of this new approach in obtaining competitive quality of ultrafast imaging when compared with the current reference method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mapping the microstructure properties of the local tissues in the brain is crucial to understand any pathological condition from a biological perspective. Most of the existing techniques to estimate the microstructure of the white matter assume a single axon orientation whereas numerous regions of the brain actually present a fiber-crossing configuration. The purpose of the present study is to extend a recent convex optimization framework to recover microstructure parameters in regions with multiple fibers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews and extends our previous work to enable fast axonal diameter mapping from diffusion MRI data in the presence of multiple fibre populations within a voxel. Most of the existing mi-crostructure imaging techniques use non-linear algorithms to fit their data models and consequently, they are computationally expensive and usually slow. Moreover, most of them assume a single axon orientation while numerous regions of the brain actually present more complex configurations, e.g. fiber crossing. We present a flexible framework, based on convex optimisation, that enables fast and accurate reconstructions of the microstructure organisation, not limited to areas where the white matter is coherently oriented. We show through numerical simulations the ability of our method to correctly estimate the microstructure features (mean axon diameter and intra-cellular volume fraction) in crossing regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: For the STroke Imaging Research (STIR) and VISTA-Imaging Investigators The purpose of this study was to collect precise information on the typical imaging decisions given specific clinical acute stroke scenarios. Stroke centers worldwide were surveyed regarding typical imaging used to work up representative acute stroke patients, make treatment decisions, and willingness to enroll in clinical trials. METHODS: STroke Imaging Research and Virtual International Stroke Trials Archive-Imaging circulated an online survey of clinical case vignettes through its website, the websites of national professional societies from multiple countries as well as through email distribution lists from STroke Imaging Research and participating societies. Survey responders were asked to select the typical imaging work-up for each clinical vignette presented. Actual images were not presented to the survey responders. Instead, the survey then displayed several types of imaging findings offered by the imaging strategy, and the responders selected the appropriate therapy and whether to enroll into a clinical trial considering time from onset, clinical presentation, and imaging findings. A follow-up survey focusing on 6 h from onset was conducted after the release of the positive endovascular trials. RESULTS: We received 548 responses from 35 countries including 282 individual centers; 78% of the centers originating from Australia, Brazil, France, Germany, Spain, United Kingdom, and United States. The specific onset windows presented influenced the type of imaging work-up selected more than the clinical scenario. Magnetic Resonance Imaging usage (27-28%) was substantial, in particular for wake-up stroke. Following the release of the positive trials, selection of perfusion imaging significantly increased for imaging strategy. CONCLUSIONS: Usage of vascular or perfusion imaging by Computed Tomography or Magnetic Resonance Imaging beyond just parenchymal imaging was the primary work-up (62-87%) across all clinical vignettes and time windows. Perfusion imaging with Computed Tomography or Magnetic Resonance Imaging was associated with increased probability of enrollment into clinical trials for 0-3 h. Following the release of the positive endovascular trials, selection of endovascular only treatment for 6 h increased across all clinical vignettes.