424 resultados para retinal arterioles
Resumo:
Résumé Durant le développement embryonnaire, les cellules pigmentaires des mammifères se développent à partir de deux origines différentes : les melanocytes se développent à partir de la crête neurale alors que les cellules de la rétine pigmentaire (RP) ont une origine neuronale. Un grand nombre de gènes sont impliqués dans la pigmentation dont les gènes de la famille tyrosinase à savoir Tyr, Tyrp1 et Dct. Certaines études ont suggéré que les gènes de la pigmentation sont régulés de manière différentielle dans les mélanocytes et dans la RP. Dans ce travail, les gènes de la famille tyrosinase ont été étudiés comme modèle de la régulation des gènes de la pigmentation par des éléments régulateurs agissant à distance. II a été montré que le promoteur du gène Tyrp1pouvait induire l'expression d'un transgène uniquement dans la RP alors que ce gène est aussi exprimé dans les mélanocytes comme le montre le phénotype des souris mutantes pour Tyrp1. Ce résultat suggère que les éléments régulateurs du promoteur sont suffisants pour l'expression dans la RP mais pas pour l'expression dans les mélanocytes. J'ai donc cherché à identifier la séquence qui régule l'expression dans les mélanocytes. Un chromosome artificiel bactérien (CAB) contenant le gène Tyrp1 s'est avéré suffisant pour induire l'expression dans les mélanocytes, comme démontré par la correction du phénotype mutant. La séquence de ce CAB contient plusieurs régions très conservées qui pourraient représenter de nouveaux éléments régulateurs. Par la suite, j'ai focalisé mon analyse sur une séquence située à -I5 kb qui s'est révélée être un amplificateur spécifique aux mélanocytes comme démontré par des expériences de cultures cellulaire et de transgenèse. De plus, une analyse poussée de cet élément a révélé que le facteur de transcription Sox 10 représentait un transactivateur de cet amplificateur. Comme pour Tyrp1, la régulation du gène tyrosinase est contrôlée par différents éléments régulateurs dans les mélanocytes et la RP. Il a été montré que le promoteur de tyrosinase n'était pas suffisant pour une forte expression dans les mélanocytes et la RP. De plus, l'analyse de la région située en amont a révélé la présence d'un amplificateur nécessaire à l'expression dans les mélanocytes à la position -15 kb. Cet amplificateur n'est toutefois pas actif dans la RP mais agit comme un répresseur dans ces cellules. Ces résultats indiquent que certains éléments nécessaires à l'expression dans les deux types de cellules pigmentaires sont absents de ces constructions. Comme pour Tyrp1, j'ai en premier lieu démontré qu'un CAB était capable de corriger le phénotype albinique, puis ai inséré un gène reporter (lacZ) dans le CAB par recombinaison homologue et ai finalement analysé l'expression du reporter en transgenèse. Ces souris ont montré une expression forte du lacZ dans les mélanocytes et la RP, ce qui indique que le CAB contient les séquences régulatrices nécessaires à l'expression correcte de tyrosinase. Afin de localiser plus précisément les éléments régulateurs, j'ai ensuite généré des délétions dans le CAB et analysé l'expression du lacZ en transgenèse. La comparaison de séquences génomiques provenant de différentes espèces a permis par la suite d'identifier des régions représentant de nouveaux éléments régulateurs potentiels. En utilisant cette approche, j'ai identifié une région qui se comporte comme un amplificateur dans la RP et qui est nécessaire à l'expression de tyrosinase dans ce tissu. De plus, j'ai identifié les facteurs de transcription Mitf et Sox10 comme transactivateurs de l'amplificateur spécifique aux mélanocytes situé à -15 kb. L'identification et la caractérisation des ces éléments régulateurs des gènes tyrosinase et Tyrp1confirme donc que la régulation différentielle des gènes dans les mélanocytes et la RP est liée à des éléments régulateurs séparés. Summary Pigment cells of mammals originate from two different lineages: melanocytes arise from the neural crest, whereas cells of the retinal pigment epithelium (RPE) originate from the optic cup of the developing forebrain. A large set of genes are involved in pigmentation, including the members of the tyrosinase gene family, namely tyrosinase, Tyrp1 and Dct. Previous studies have suggested that pigmentation genes are differentially regulated in melanocytes and RPE. In this work, the tyrosinase gene family was used as a model for studying the involvement of distal regulatory elements in pigment cell-specific gene expression. The promoter of the Tyrp1 gene has been shown to drive detectable transgene expression only to the RPE, even though the gene is also expressed in melanocytes as evident from Tyrp1-mutant mice. This indicates that the regulatory elements responsible for Tyrp1 gene expression in the RPE are not sufficient for expression in melanocytes. I thus searched for a putative melanocyte-specific regulatory sequence and demonstrate that a bacterial artificial chromosome (BAC) containing the Tyrp1 gene and surrounding sequences is able to target transgenic expression to melanocytes and to rescue the Tyrp1 b (brown) phenotype. This BAC contains several highly conserved non-coding sequences that might represent novel regulatory elements. I further focused on a sequence located at -15 kb which I identified as amelanocyte-specific enhancer as shown by cell culture and transgenic mice. In addition, further functional analysis identified the transcription factor Sox10 as being able to bind and transactivate this enhancer. As for Tyrp1, tyrosinase gene regulation is mediated by different cis-regulatory elements in melanocytes and RPE. It was shown that the tyrosinase promoter was not sufficient to confer strong and specific expression in melanocytes and RPE. Moreover, analysis of tyrosinase upstream sequence, revealed the presence of a specific enhancer at position -15 kb which was necessary to confer strong expression in melanocytes. This enhancer element however failed to act as an enhancer in the RPE, but rather repressed expression. This indicates that some regulatory elements required for tyrosinase expression in both RPE and melanocytes are still missing from these constructs. As for Tyrp1, I first demonstrated that a BAC containing the Tyr gene is able to rescue the Tyr c (albino) phenotype in mice, then I inserted a lacZ reporter gene in the BAC by homologous recombination, and finally analysed the pattern of lacZ expression in transgenic mice. These mice showed strong lacZ expression in both RPE and melanocytes, indicating that the BAC contains the regulatory sequences required for proper tyrosinase expression. In order to localize more precisely these regulatory elements, I have then generated several deletions in the BAC and analysed lacZ expression in transgenic mice. Multi-species comparative genomic analysis then allowed identifying conserved sequences that potentially represent novel regulatory elements. Using this experimental approach, I identified a region that behaves as a RPE-specific enhancer and that is required for tyrosinase expression in the retina] pigment epithelium. In addition, I identified the transcription factors Mitf and Sox l0 as being transactivators of the melanocyte-specific enhancer located at -l5 kb. The identification and characterization of these tyrosinase and Tyrp1 distal regulatory element supports the idea that separate regulatory sequences mediate differential gene expression in melanocytes and RPE.
Resumo:
Proteins PRPF31, PRPF3 and PRPF8 (RP-PRPFs) are ubiquitously expressed components of the spliceosome, a macromolecular complex that processes nearly all pre-mRNAs. Although these spliceosomal proteins are conserved in eukaryotes and are essential for survival, heterozygous mutations in human RP-PRPF genes lead to retinitis pigmentosa, a hereditary disease restricted to the eye. Using cells from patients with 10 different mutations, we show that all clinically relevant RP-PRPF defects affect the stoichiometry of spliceosomal small nuclear RNAs (snRNAs), the protein composition of tri-small nuclear ribonucleoproteins and the kinetics of spliceosome assembly. These mutations cause inefficient splicing in vitro and affect constitutive splicing ex-vivo by impairing the removal of at least 9% of endogenously expressed introns. Alternative splicing choices are also affected when RP-PRPF defects are present. Furthermore, we show that the steady-state levels of snRNAs and processed pre-mRNAs are highest in the retina, indicating a particularly elevated splicing activity. Our results suggest a role for PRPFs defects in the etiology of PRPF-linked retinitis pigmentosa, which appears to be a truly systemic splicing disease. Although these mutations cause widespread and important splicing defects, they are likely tolerated by the majority of human tissues but are critical for retinal cell survival.
Resumo:
PURPOSE: Intravenous (i.v.) pulse of corticosteroids has been used to treat severe eye inflammation from different origins. Whether such large doses result in vitreous levels that differ either in magnitude or duration from more conventional corticotherapy remain unsolved issues. The authors therefore determined levels of methylprednisolone hemisuccinate and methylprednisolone in the vitreous and serum of patients at different times after a single i.v. perfusion of methylprednisolone hemisuccinate. METHODS: Fifty patients scheduled for a first vitrectomy received an i.v. injection of 500 mg hemisuccinate methylprednisolone at different times before surgery (from 15-24 hours). Patients were divided into two groups: those with (n = 21) and without (n = 29) retinal detachment (RD). Pure vitreous samples were analyzed by high-pressure liquid chromatography. RESULTS: Both the ester and the nonester methylprednisolone forms were sampled in the vitreous, showing a slower rate of hydrolysis compared to the serum. On average, the highest concentration of total methylprednisolone in the vitreous was found at 2.5 hours and rapidly decreased for the group of patients with RD. In the group of patients without RD, the highest concentration was reached at 6 hours and then slowly decreased. The antiinflammatory potency in the nondetached retina eyes was approximately 500 times more than in the physiologic vitreous, but despite the route of administration (i.v. or oral), only 1/10 of the corticosteroid serum concentration was measured in the vitreous. CONCLUSION: High concentration of methylprednisolone is achieved by i.v. pulse therapy without changing the kinetic of entry in the vitreous of nondetached retina eyes when compared to conventional oral corticotherapy. Hydrolysis occurs in the vitreous resulting in high rate of active form. Pulse therapy could be considered in cases of severe ocular inflammation involving the posterior segment of the eye.
Resumo:
PURPOSE: To report the lethal course of malignant transformation of retinoma in an adult. METHODS: Case report. A 40-year-old patient presented with retinoma in his right eye and retinoblastoma in his left eye. Enucleation was recommended but refused and the patient received whole eye radiotherapy elsewhere. Five years later he presented again, with temporal hemianopsia of the left eye secondary to chiasmatic invasion. RESULTS: Diagnosis of retinoblastoma infiltration was confirmed by stereotactic biopsy of the chiasmatic lesion. Treatment with intravenous and intrathecal chemotherapy led to partial remission, and was followed by stereotactic irradiation of the chiasmatic mass and right optic nerve. The left eye was enucleated. Death occurred one year later due to cerebrospinal fluid metastases. CONCLUSION: Extraocular extension of retinoblastoma diagnosed in adulthood has never, to our knowledge, been reported. This case stresses the importance of lifelong retinoma monitoring and the necessity for radical treatment in the event of malignant transformation.
Resumo:
Background:Microcystic macular edema can occur after optic neuropathies of various etiologies, and is easily demonstrated by OCT. We report a cohort of patients with microcystic macular edema. Patients and Methods: All patients with optic neuropathy and microcystic macular edema were enrolled. Demographics, visual function, retinal angiographies and OCT parameters were studied. Results: Nineteen patients (23 eyes) exhibited microcystic macular edema: 10 men/9 women, aged 17-91 years. Etiologies of optic nerve atrophy were compressive (5), inflammatory (4), glaucoma (3), ischemic (3), trauma (2), degenerative (1), and hereditary (1). Median visual acuity was 4/10 (NLP-12/10). Fluorescein angiography showed no leakage. Topography of the microcystic macular edema correlated with near infrared images but with visual field defects in only 26 %. OCT parameters were all abnormal. Conclusions: Microcystic macular edema is a non-specific manifestation from an optic neuropathy of any etiology. The precise mechanism leading to microcystic macular edema remains unknown but trans-synaptic retrograde degeneration with Müller cells dysfunction is likely.
Resumo:
Background: Macular edema resulting from central retinal vein occlusion is effectively treated with anti-vascular endothelial growth factor injections. However, some patients need monthly retreatment and still show frequent recurrences. The purpose of this study was to evaluate the visual and anatomic outcomes of refractory macular edema resulting from ischemic central retinal vein occlusion in patients switched from ranibizumab to aflibercept intravitreal injections. Patients and Methods: We describe a retrospective series of patients followed in the Medical Retina Unit of the Jules Gonin Eye Hospital for macular edema due to ischemic central retinal vein occlusion, refractory to monthly retreatment with ranibizumab, and changed to aflibercept. Refractory macular edema was defined as persistence of any fluid at each visit one month after last injection during at least 6 months. All patients had to have undergone pan-retinal laser scan. Results: Six patients were identified, one of whom had a very short-term follow-up (excluded from statistics). Mean age was 57 ± 12 years. The mean changes in visual acuity and central macular thickness from baseline to switch were + 20.6 ± 20.3 ETDRS letters and - 316.4 ± 276.6 µm, respectively. The additional changes from before to after the switch were + 9.2 ± 9.5 ETDRS letters and - 248.0 ± 248.7 µm, respectively. The injection intervals could often be lengthened after the switch. Conclusions: Intravitreal aflibercept seems to be a promising alternative treatment for macular edema refractory to ranibizumab in ischemic central retinal vein occlusion.
Resumo:
Background: Proliferative retinopathy is an important cause of vision loss in diabetic patients. Incomplete panretinal photocoagulation (PRP) can lead to recurrent proliferation of new vessels. Patients and Methods: We retrospectively analysed the outcome of patients with high risk proliferative diabetic retinopathy (PDR) previously treated with slit lamp PRP who underwent indirect fill in argon laser treatment with scleral indentation under anesthesia for persistent neovascular proliferation. Results: Seventeen eyes of ten patients were included. The mean age at diabetes onset was 17.3 years SD 16.2 (range 2-44). All patients reported long standing poor glycemic control (mean HbA1c: 8.5 % SD 1.3 range 5.9-10.2). The area of retinal ischemia decreased significantly from 15 ± 7.5 disk areas (DA) before fill-in laser to 3.2 ± 4.2 DA after fill-in laser (p = 0.001). The new vessels also regressed significantly after laser treatment 8.6 ± 6.1 DA before treatment versus 6.5 ± 6.4 DA after laser treatment, (p = 0.044). Quiescent PDR was reached in 10 eyes (58.8 %) at the last visit. Conclusions: Fill-in indirect argon laser under general anesthesia should be considered to achieve further new vessels regression in high risk PDR patients. Scleral indentation and absence of pain may allow for more extensive laser application.
Resumo:
Lentivirus-based gene delivery vectors carrying multiple gene cassettes are powerful tools in gene transfer studies and gene therapy, allowing coexpression of multiple therapeutic factors and, if desired, fluorescent reporters. Current strategies to express transgenes and microRNA (miRNA) clusters from a single vector have certain limitations that affect transgene expression levels and/or vector titers. In this study, we describe a novel vector design that facilitates combined expression of therapeutic RNA- and protein-based antiangiogenic factors as well as a fluorescent reporter from back-to-back RNApolII-driven expression cassettes. This configuration allows effective production of intron-embedded miRNAs that are released upon transduction of target cells. Exploiting such multigenic lentiviral vectors, we demonstrate robust miRNA-directed downregulation of vascular endothelial growth factor (VEGF) expression, leading to reduced angiogenesis, and parallel impairment of angiogenic pathways by codelivering the gene encoding pigment epithelium-derived factor (PEDF). Notably, subretinal injections of lentiviral vectors reveal efficient retinal pigment epithelium-specific gene expression driven by the VMD2 promoter, verifying that multigenic lentiviral vectors can be produced with high titers sufficient for in vivo applications. Altogether, our results suggest the potential applicability of combined miRNA- and protein-encoding lentiviral vectors in antiangiogenic gene therapy, including new combination therapies for amelioration of age-related macular degeneration.
Resumo:
We examined the effect of anterior ischemic optic neuropathy (AION) on the activity of intrinsically photosensitive retinal ganglion cells (ipRGCs) using the pupil as proxy. Eighteen patients with AION (10 unilateral, 8 bilateral) and 29 age-matched control subjects underwent chromatic pupillometry. Red and blue light stimuli increasing in 0.5 log steps were presented to each eye independently under conditions of dark and light adaptation. The recorded pupil contraction was plotted against stimulus intensity to generate scotopic and photopic response curves for assessment of synaptically-mediated ipRGC activity. Bright blue light stimuli presented monocularly and binocularly were used for melanopsin activation. The post-stimulus pupil size (PSPS) at the 6th second following stimulus offset was the marker of intrinsic ipRGC activity. Finally, questionnaires were administered to assess the influence of ipRGCs on sleep. The pupil response and PSPS to all monocularly-presented light stimuli were impaired in AION eyes, indicating ipRGC dysfunction. To binocular light stimulation, the PSPS of AION patients was similar to that of controls. There was no difference in the sleep habits of the two groups. Thus after ischemic injury to one or both optic nerves, the summated intrinsic ipRGC activity is preserved when both eyes receive adequate light exposure.
Resumo:
Background: Malignant hypertension is defined by marked systemic arterial hypertension with retinal haemorrhages, exudation or papilloedema. Due to the rarity of this disease and due to its non-specific symptoms and lesions, the diagnosis can be challenging. Patients and Methods We investigated the types of symptoms and ocular lesions observed with ocular fundus examination, ocular fundus photography, fluorescein angiography and optical coherence tomography in a small case series of 7 patients with malignant hypertension. Results: Median systolic blood pressure (BP) was 205 mmHg ± 21. Median diastolic BP was 150 mmHg ± 16. Decrease in visual acuity (6/7 patients) and scotoma (5/7) were the main symptoms and Elschnig spot, flamed shaped haemorrhage, serous retinal detachment, cotton wool spots and optic nerve oedema were the five most frequently observed lesions. A regression of lesions was observed after therapy of systemic hypertension. Conclusion: The association of multiple lesions strongly suggests malignant hypertension. However even in cases with only one lesion malignant hypertension should be kept in mind.
Resumo:
NR2E3 encodes the photoreceptor-specific nuclear hormone receptor that acts as a repressor of cone-specific gene expression in rod photoreceptors, and as an activator of several rod-specific genes. Recessive variants located in the ligand-binding domain (LBD) of NR2E3 cause enhanced short wavelength sensitive- (S-) cone syndrome (ESCS), a retinal degeneration characterized by an excess of S-cones and non-functional rods. We analyzed the dimerization properties of NR2E3 and the effect of disease-causing LBD missense variants by bioluminescence resonance energy transfer (BRET(2) ) protein interaction assays. Homodimerization was not affected in presence of p.A256V, p.R039G, p.R311Q, and p.R334G variants, but abolished in presence of p.L263P, p.L336P, p.L353V, p.R385P, and p.M407K variants. Homology modeling predicted structural changes induced by NR2E3 LBD variants. NR2E3 LBD variants did not affect interaction with CRX, but with NRL and rev-erbα/NR1D1. CRX and NRL heterodimerized more efficiently together, than did either with NR2E3. NR2E3 did not heterodimerize with TLX/NR2E1 and RXRα/NR2C1. The identification of a new compound heterozygous patient with detectable rod function, who expressed solely the p.A256V variant protein, suggests a correlation between LBD variants able to form functional NR2E3 dimers and atypical mild forms of ESCS with residual rod function.
Resumo:
Central serous chorioretinopathy (CSCR) is a major cause of vision threat among middle-aged male individuals. Multimodal imaging led to the description of a wide range of CSCR manifestations, and highlighted the contribution of the choroid and pigment epithelium in CSCR pathogenesis. However, the exact molecular mechanisms of CSCR have remained uncertain. The aim of this review is to recapitulate the clinical understanding of CSCR, with an emphasis on the most recent findings on epidemiology, risk factors, clinical and imaging diagnosis, and treatments options. It also gives an overview of the novel mineralocorticoid pathway hypothesis, from animal data to clinical evidences of the biological efficacy of oral mineralocorticoid antagonists in acute and chronic CSCR patients. In rodents, activation of the mineralocorticoid pathway in ocular cells either by intravitreous injection of its specific ligand, aldosterone, or by over-expression of the receptor specifically in the vascular endothelium, induced ocular phenotypes carrying many features of acute CSCR. Molecular mechanisms include expression of the calcium-dependent potassium channel (KCa2.3) in the endothelium of choroidal vessels, inducing subsequent vasodilation. Inappropriate or over-activation of the mineralocorticoid receptor in ocular cells and other tissues (such as brain, vessels) could link CSCR with the known co-morbidities observed in CSCR patients, including hypertension, coronary disease and psychological stress.
Resumo:
Background:Microcystic macular edema can occur after optic neuropathies of various etiologies, and is easily demonstrated by OCT. We report a cohort of patients with microcystic macular edema. Patients and Methods: All patients with optic neuropathy and microcystic macular edema were enrolled. Demographics, visual function, retinal angiographies and OCT parameters were studied. Results: Nineteen patients (23 eyes) exhibited microcystic macular edema: 10 men/9 women, aged 17-91 years. Etiologies of optic nerve atrophy were compressive (5), inflammatory (4), glaucoma (3), ischemic (3), trauma (2), degenerative (1), and hereditary (1). Median visual acuity was 4/10 (NLP-12/10). Fluorescein angiography showed no leakage. Topography of the microcystic macular edema correlated with near infrared images but with visual field defects in only 26 %. OCT parameters were all abnormal. Conclusions: Microcystic macular edema is a non-specific manifestation from an optic neuropathy of any etiology. The precise mechanism leading to microcystic macular edema remains unknown but trans-synaptic retrograde degeneration with Müller cells dysfunction is likely. Zusammenfassung Hintergrund: Das mikrozystische Makulaödem kann im Rahmen einer Optikusatrophie jeglicher Ätiologie auftreten und ist leicht mit dem OCT zu erkennen. Wir berichten über eine Patientenkohorte mit mikrozystischem Makulaödem. Patienten und Methoden: Alle Patienten mit einer Optikusneuropathie und einem mikrozystischen Makulaödem wurden in diese Studie eingeschlossen. Die Demografie, die Sehfunktion, die Netzhautangiografie und die OCT-Parameter wurden untersucht. Ergebnisse: Neunzehn Patienten (23 Augen) hatten ein mikrozystisches Makulaödem: 10 Männer/9 Frauen im Alter von 17 bis 91 Jahren. Die Ursachen der Optikusatrophie waren Kompressionen (5), Entzündungen (4), Glaukom (3), Ischämien (3), Traumata (2), Degenerationen (1) und genetisch (1). Der mittlere Visus war 0,4 (keine Lichtwahrnehmung 1,2). In der Fluoreszenzangiografie fand sich keine Leckage. Das OCT des mikrozystischen Makulaödems korrelierte immer mit den Infrarot-Bildern (Nahaufnahme), jedoch nur in 26 % mit den Gesichtsfelddefekten. Alle OCT-Parameter waren abnormal. Schlussfolgerungen: Das mikrozystische Makulaödem ist eine unspezifische Manifestation einer Optikusneuropathie jeglicher Ätiologie. Der genaue Mechanismus, der zu einem mikrozystischen Makulaödem führt, ist unbekannt, eine trans-synaptische retrograde Degeneration mit Dysfunktion der Müller-Zellen ist jedoch wahrscheinlich.
Resumo:
Cancer stem cells are cancer cells characterized by stem cell properties and represent a small population of tumor cells that drives tumor development, progression, metastasis and drug resistance. To date, the molecular mechanisms that generate and regulate cancer stem cells are not well defined. BORIS (Brother of Regulator of Imprinted Sites) or CTCFL (CTCF-like) is a DNA-binding protein that is expressed in normal tissues only in germ cells and is re-activated in tumors. Recent evidences have highlighted the correlation of BORIS/CTCFL expression with poor overall survival of different cancer patients. We have previously shown an association of BORIS-expressing cells with stemness gene expression in embryonic cancer cells. Here, we studied the role of BORIS in epithelial tumor cells. Using BORIS-molecular beacon that was already validated, we were able to show the presence of BORIS mRNA in cancer stem cell-enriched populations (side population and spheres) of cervical, colon and breast tumor cells. BORIS silencing studies showed a decrease of sphere formation capacity in breast and colon tumor cells. Importantly, BORIS-silencing led to down-regulation of hTERT, stem cell (NANOG, OCT4, SOX2 and BMI1) and cancer stem cell markers (ABCG2, CD44 and ALDH1) genes. Conversely, BORIS-induction led to up-regulation of the same genes. These phenotypes were observed in cervical, colon and invasive breast tumor cells. However, a completely different behavior was observed in the non-invasive breast tumor cells (MCF7). Indeed, these cells acquired an epithelial mesenchymal transition phenotype after BORIS silencing. Our results demonstrate that BORIS is associated with cancer stem cell-enriched populations of several epithelial tumor cells and the different phenotypes depend on the origin of tumor cells.
Resumo:
Glucocorticoids have been used for decades in the treatment of ocular disorders via topical, periocular, and more recently intravitreal routes. However, their exact mechanisms of action on ocular tissues remain imperfectly understood. Fortunately, two recently approved intravitreal sustained-release drug delivery systems have opened new perspectives for these very potent drugs. To date, among other retinal conditions, their label includes diabetic macular edema, for which a long-lasting therapeutic effect has been demonstrated both morphologically and functionally in several randomized clinical trials. The rate of ocular complications of intravitreal sustained-release steroids, mainly cataract formation and intraocular pressure elevation, is higher than with anti-vascular endothelial growth factor agents. Yet, a better understanding of the mechanisms underlying these adverse effects and the search for the minimal efficient dose should help optimize their therapeutic window.