452 resultados para RETINAL NEUROPEPTIDES
Resumo:
The importance of the lateral hypothalamus in the pursuit of reward has long been recognized. However, the hypothalamic neuronal network involved in the regulation of reward still remains partially unknown. Hypocretins (aka orexins) are neuropeptides synthesized by a few thousand neurons restricted to the lateral hypothalamus and the perifornical area. Compelling evidence indicates that hypocretin neurons receive inputs from sensory and limbic systems and drive hyper-arousal possibly through modulation of stress responses. Major advances have been made in the elucidation of the hypocretin involvement in the regulation of arousal, stress, motivation, and reward seeking, without clearly defining the role of hypocretins in addictionrelated behaviors. We have recently gathered substantial evidence that points to a previously unidentified role for hypocretin-1 in driving relapse for cocaine seeking through activation of brain stress pathways. Meanwhile, several authors published concordant observations rather suggesting a direct activation of the mesolimbic dopamine system. In particular, hypocretin-1 has been shown to be critically involved in cocaine sensitization through the recruitment of NMDA receptors in the ventral tegmental area. Overall, on can conclude from recent findings that activation of hypocretin/orexin neurons plays a critical role in the development of the addiction process, either by contributing to brain sensitization (which is thought to lead to the unmanageable desire for drug intake) or by modulating the brain reward system that, in coordination with brain stress systems, leads to a vulnerable state that may facilitate relapse for drug seeking behavior.
Resumo:
Purpose: To investigate the differences between the Fundus Camera (Topcon TRC-50X) and Confocal Scanning Laser Ophthalmoscope (Heidelberg retina angiogram (HRA)) on the fundus autofluorescence (FAF) imaging (resolution and FAF characteristics). Methods: Eighty nine eyes of 46 patients with various retinal diseases underwent FAF imaging with HRA (488nm exciter / 500nm barrier filter) before fluorescein angiography (FFA) and Topcon Fundus Camera (580nm exciter / 695nm barrier filter) before and after FFA. The quality of the FAF images was estimated, compared for their resolution and analysed for the influence of fixation stability and cataracts. Hypo- and hyper-FAF behaviour was analysed for the healthy disc, healthy fovea, and a variety of pathological features. Results: HRA images were found to be of superior quality in 18 eyes, while Topcon images were estimated superior in 21 eyes. No difference was found in 50 eyes. Both poor fixation (p=0.009) and more advanced cataract (p=0.013) were found to strongly increase the likelihood of better image quality by Topcon. Images acquired by Topcon before and after FFA were identical (100%). The healthy disc was usually dark on HRA (71%), but showed mild autofluorescence on Topcon (88%). The healthy fovea showed in 100% Hypo-FAF on HRA, while Topcon showed in 52% Iso-FAF, in 43% mild Hypo-FAF, and in 5% Hypo-FAF as on HRA. No difference of FAF was found for geographic atrophy, pigment changes, and drusen, although Topcon images were often more detailed. Hyper-FAF due to exudation showed better on HRA. Pigment epithelium detachment showed identical FAF behaviour on the border, but reduced FAF with Topcon in the center. Cystic edema was visible only on HRA in a petaloid pattern. Hard exsudates caused Hypo-FAF only on HRA, hardly visible on Topcon. Blocage phenomenon by blood however was identical. Conclusions: The filter set of Topcon and the single image acquisition appear to be an advantage for patients with cataract or poor fixation. Preceding FFA does not alter the Topcon FAF image. Regarding the FAF behaviour, there are differences between the two systems which need to be taken into account when interpreting the images.
Resumo:
There is increasing evidence that the microcirculation plays an important role in the pathogenesis of cardiovascular diseases. Changes in retinal vascular caliber reflect early microvascular disease and predict incident cardiovascular events. We performed a genome-wide association study to identify genetic variants associated with retinal vascular caliber. We analyzed data from four population-based discovery cohorts with 15,358 unrelated Caucasian individuals, who are members of the Cohort for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and replicated findings in four independent Caucasian cohorts (n = 6,652). All participants had retinal photography and retinal arteriolar and venular caliber measured from computer software. In the discovery cohorts, 179 single nucleotide polymorphisms (SNP) spread across five loci were significantly associated (p<5.0×10(-8)) with retinal venular caliber, but none showed association with arteriolar caliber. Collectively, these five loci explain 1.0%-3.2% of the variation in retinal venular caliber. Four out of these five loci were confirmed in independent replication samples. In the combined analyses, the top SNPs at each locus were: rs2287921 (19q13; p = 1.61×10(-25), within the RASIP1 locus), rs225717 (6q24; p = 1.25×10(-16), adjacent to the VTA1 and NMBR loci), rs10774625 (12q24; p = 2.15×10(-13), in the region of ATXN2,SH2B3 and PTPN11 loci), and rs17421627 (5q14; p = 7.32×10(-16), adjacent to the MEF2C locus). In two independent samples, locus 12q24 was also associated with coronary heart disease and hypertension. Our population-based genome-wide association study demonstrates four novel loci associated with retinal venular caliber, an endophenotype of the microcirculation associated with clinical cardiovascular disease. These data provide further insights into the contribution and biological mechanisms of microcirculatory changes that underlie cardiovascular disease.
Resumo:
Abstract The amygdala is a group of nuclei in the temporal lobe of the brain that plays a crucial role in anxiety and fear behavior. Sensory information converges in the basolateral and lateral nuclei of the amygdala, which have been the first regions in the brain where the acquisition of new (fear) memories has been associated with long term changes in synaptic transmission. These nuclei, in turn, project to the central nucleus of the amygdala. The central amygdala, through its extensive projections to numerous nuclei in the midbrain and brainstem, plays a pivotal role in the orchestration of the rapid autonomic and endocrine fear responses. In the central amygdala a large number of neuropeptides and receptors is expressed, among which high levels of vasopressin and oxytocin receptors. Local injections of these peptides into the amygdala modulate several aspects of the autonomic fear reaction. Interestingly, their effects are opposing: vasopressin tends to enhance the fear reactions, whereas oxytocin has anxiolytic effects. In order to investigate the neurophysiological mechanisms that could underlie this opposing modulation of the fear behavior, we studied the effects of vasopressin and oxytocin on the neuronal activity in an acute brain slice preparation of the rat central amygdala. We first assessed the effects of vasopressin and oxytocin on the spontaneous activity of central amygdala neurons. Extracellular single unit recordings revealed two major populations of neurons: a majority of neurons was excited by vasopressin and inhibited by oxytocin, whereas other neurons were only excited by oxytocin receptor activation. The inhibitory effect of oxytocin could be reduced by the block of GABAergic transmission, whereas the excitatory effects of vasopressin and oxytocin were not affected. In a second step we identified the cellular mechanisms for the excitatory effects of both peptides as well as the morphological and biochemical mechanisms underlying the opposing effects, by using sharp electrode recordings together with intracellular labelings. We revealed that oxytocin-excited neurons are localized in the lateral part (CeL) whereas vasopressin excited cells are found in the medial part of the central amygdala (CeM). The tracing of the neuronal morphology showed that the axon collaterals of the oxytocin-excited neurons project from the CeL, far into the CeM. Combined immunohistochemical stainings indicated that these projections are GABAergic. In the third set of experiments we investigated the synaptic interactions between the two identified cell populations. Whole-cell patch-clamp recordings in the CeM revealed that the inhibitory effect of oxytocin was caused by the massive increase of inhibitory GABAergic currents, which was induced by the activation of CeL neurons. Finally, the effects of vasopressin and oxytocin on evoked activity were investigated. We found on the one hand, that the probability of evoking action potentials in the CeM by stimulating the basolateral amygdala afferents was enhanced under vasopressin, whereas it decreased under oxytocin. On the other hand, the impact of cortical afferents stimulation on the CeL neurons was enhanced by oxytocin application. Taken together, these findings have allowed us to develop a model, in which the opposing behavioral effects of vasopressin and oxytocin are caused by a selective activation of two distinct populations of neurons in the GABAergic network of the central amygdala. Our model could help to develop new anxiolytic treatments, which modulate simultaneously both receptor systems. By acting on a GABAergic network, such treatments can further be tuned by combinations with classical benzodiazepines. Résumé: L'amygdale est un groupe de noyaux cérébraux localisés dans le lobe temporal. Elle joue un rôle essentiel dans les comportements liés à la peur et l'anxiété. L'information issue des aires sensorielles converge vers les noyaux amygdaliens latéraux et basolatéraux, qui sont les projections vers différents noyaux du tronc cérébral et de l'hypothalamus, joue un rôle clef premières régions dans lesquelles il a été démontré que l'acquisition d'une nouvelle mémoire (de peur) était associée à des changements à long terme de la transmission synaptique. Ces noyaux envoient leurs projections sur l'amygdale centrale, qui à travers ses propres dans l'orchestration des réponses autonomes et endocrines de peur. Le contrôle de l'activité neuronale dans l'amygdale centrale module fortement la réaction de peur. Ainsi, un grand nombre de neuropeptides sont spécifiquement exprimés dans l'amygdale centrale et un bon nombre d'entre eux interfère dans la réaction de peur et d'anxiété. Chez les rats, une forte concentration de récepteurs à l'ocytocine et à la vasopressine est exprimée dans le noyau central, et l'injection de ces peptides dans l'amygdale influence différents aspects de la réaction viscérale associée à la peur. Il est intéressant de constater que ces peptides exercent des effets opposés. Ainsi, la vasopressine augmente la réaction de peur alors que l'ocytocine a un effet anxiolytique. Afin d'investiguer les mécanismes neurophysiologiques responsables de ces effets opposés, nous avons étudié l'effet de la vasopressine et de l'ocytocine sur l'activité neuronale de préparations de tranches de cerveau de rats contenant entre autres de l'amygdale centrale. Tout d'abord, notre intérêt s'est porté sur les effets de ces deux neuropeptides sur l'activité spontanée dans l'amygdale centrale. Des enregistrements extracellulaires ont révélé différentes populations de neurones ; une majorité était excitée par la vasopressine et inhibée par l'ocytocine ; d'autres étaient seulement excités par l'activation du récepteur à l'ocytocine. L'effet inhibiteur de l'ocytocine a pu être réduit par l'inhibition de la transmission GABAergique, alors que ses effets excitateurs n'étaient pas affectés. Dans un deuxième temps, nous avons identifié les mécanismes cellulaires responsables de l'effet excitateur de ces deux peptides et analysé les caractéristiques morphologiques et biochimiques des neurones affectés. Des enregistrements intracellulaires ont permis de localiser les neurones excités par l'ocytocine dans la partie latérale de l'amygdale centrale (CeL), et ceux excités par la vasopressine dans sa partie médiale (CeM). Le traçage morphologique des neurones a révélé que les collatérales axonales des cellules excitées par l'ocytocine projetaient du CeL loin dans le CeM. De plus, des colorations immuno-histochimiques ont révélé que ces projections étaient GABAergiques. Dans un troisième temps, nous avons étudié les interactions synaptiques entre ces deux populations de cellules. Les enregistrements en whole-cell patch-clamp dans le CeM ont démontré que les effets inhibiteurs de l'ocytocine résultaient de l'augmentation massive des courants GABAergique résultant de l'activation des neurones dans le CeL. Finalement, les effets de l'ocytocine et de la vasopressine sur l'activité évoquée ont été étudiés. Nous avons pu montrer que la probabilité d'évoquer un potentiel d'action dans le CeM, par stimulation de l'amygdale basolatérale, était augmentée sous l'effet de la vasopressine et diminuée sous l'action de l'ocytocine. Par contre, l'impact de la stimulation des afférences corticales sur les neurones du CeL était augmenté par l'application de l'ocytocine. L'ensemble de ces résultats nous a permis de développer un modèle dans lequel les effets comportementaux opposés de la vasopressine et de l'ocytocine sont causés par une activation sélective des deux différentes populations de neurones dans un réseau GABAergique. Un tel modèle pourrait mener au développement de nouveaux traitements anxiolytiques en modulant l'activité des deux récepteurs simultanément. En agissant sur un réseau GABAergique, les effets d'un tel traitement pourraient être rendus encore plus sélectifs en association avec des benzodiazépines classiques.
Resumo:
PURPOSE: The aim of this study was to investigate the effect of a single intravitreal (i.v.t.) injection of vasoactive intestinal peptide (VIP) loaded in rhodamine-conjugated liposomes (VIP-Rh-Lip) on experimental autoimmune uveoretinitis (EAU). METHODS: An i.v.t. injection of VIP-Rh-Lip, saline, VIP, or empty-(E)-Rh-Lip was performed simultaneously, either 6 or 12 days after footpad immunization with retinal S-antigen in Lewis rats. Clinical and histologic scores were determined. Immunohistochemistry and cytokine quantification by multiplex enzyme-linked immunosorbent assay were performed in ocular tissues. Systemic immune response was determined at day 20 postimmunization by measuring proliferation and cytokine secretion of cells from inguinal lymph nodes (ILNs) draining the immunization site, specific delayed-type hypersensitivity (DTH), and the serum concentration of cytokines. Ocular and systemic biodistribution of VIP-Rh-Lip was studied in normal and EAU rats by immunofluorescence. RESULTS: The i.v.t. injection of VIP-Rh-Lip performed during the afferent, but not the efferent, phase of the disease reduced clinical EAU and protected against retinal damage. No effect was observed after saline, E-Rh-Lip, or VIP injection. VIP-Rh-Lip and VIP were detected in intraocular macrophages and in lymphoid organs. In VIP-Rh-Lip-treated eyes, macrophages expressed transforming growth factor-beta2, low levels of major histocompatibility complex class II, and nitric oxide synthase-2. T-cells showed activated caspase-3 with the preservation of photoreceptors. Intraocular levels of interleukin (IL)-2, interferon-gamma (IFN-gamma), IL-17, IL-4, GRO/KC, and CCL5 were reduced with increased IL-13. At the systemic level, treatment reduced retinal soluble autoantigen lymphocyte proliferation, decreased IL-2, and increased IL-10 in ILN cells, and diminished specific DTH and serum concentration of IL-12 and IFN-gamma. CONCLUSIONS: An i.v.t. injection of VIP-Rh-Lip, performed during the afferent stage of immune response, reduced EAU pathology through the immunomodulation of intraocular macrophages and deviant stimulation of T-cells in ILN. Thus, the encapsulation of VIP within liposomes appears as an effective strategy to deliver VIP into the eye and is an efficient means of the prevention of EAU severity.
Resumo:
Photoreceptors and retinal pigment epithelial cells (RPE) targeting remains challenging in ocular gene therapy. Viral gene transfer, the only method having reached clinical evaluation, still raises safety concerns when administered via subretinal injections. We have developed a novel transfection method in the adult rat, called suprachoroidal electrotransfer (ET), combining the administration of nonviral plasmid DNA into the suprachoroidal space with the application of an electrical field. Optimization of injection, electrical parameters and external electrodes geometry using a reporter plasmid, resulted in a large area of transfected tissues. Not only choroidal cells but also RPE, and potentially photoreceptors, were efficiently transduced for at least a month when using a cytomegalovirus (CMV) promoter. No ocular complications were recorded by angiographic, electroretinographic, and histological analyses, demonstrating that under selected conditions the procedure is devoid of side effects on the retina or the vasculature integrity. Moreover, a significant inhibition of laser induced-choroidal neovascularization (CNV) was achieved 15 days after transfection of a soluble vascular endothelial growth factor receptor-1 (sFlt-1)-encoding plasmid. This is the first nonviral gene transfer technique that is efficient for RPE targeting without inducing retinal detachment. This novel minimally invasive nonviral gene therapy method may open new prospects for human retinal therapies.
Resumo:
Glucose metabolism is difficult to image with cellular resolution in mammalian brain tissue, particularly with (18) fluorodeoxy-D-glucose (FDG) positron emission tomography (PET). To this end, we explored the potential of synchrotron-based low-energy X-ray fluorescence (LEXRF) to image the stable isotope of fluorine (F) in phosphorylated FDG (DG-6P) at 1 μm(2) spatial resolution in 3-μm-thick brain slices. The excitation-dependent fluorescence F signal at 676 eV varied linearly with FDG concentration between 0.5 and 10 mM, whereas the endogenous background F signal was undetectable in brain. To validate LEXRF mapping of fluorine, FDG was administered in vitro and in vivo, and the fluorine LEXRF signal from intracellular trapped FDG-6P over selected brain areas rich in radial glia was spectrally quantitated at 1 μm(2) resolution. The subsequent generation of spatial LEXRF maps of F reproduced the expected localization and gradients of glucose metabolism in retinal Müller glia. In addition, FDG uptake was localized to periventricular hypothalamic tanycytes, whose morphological features were imaged simultaneously by X-ray absorption. We conclude that the high specificity of photon emission from F and its spatial mapping at ≤1 μm resolution demonstrates the ability to identify glucose uptake at subcellular resolution and holds remarkable potential for imaging glucose metabolism in biological tissue. © 2012 Wiley Periodicals, Inc.
Resumo:
BACKGROUND: Chronic kidney disease is associated with cardiovascular disease. We tested for evidence of a shared genetic basis to these traits. STUDY DESIGN: We conducted 2 targeted analyses. First, we examined whether known single-nucleotide polymorphisms (SNPs) underpinning kidney traits were associated with a series of vascular phenotypes. Additionally, we tested whether vascular SNPs were associated with markers of kidney damage. Significance was set to 1.5×10(-4) (0.05/325 tests). SETTING & PARTICIPANTS: Vascular outcomes were analyzed in participants from the AortaGen (20,634), CARDIoGRAM (86,995), CHARGE Eye (15,358), CHARGE IMT (31,181), ICBP (69,395), and NeuroCHARGE (12,385) consortia. Tests for kidney outcomes were conducted in up to 67,093 participants from the CKDGen consortium. PREDICTOR: We used 19 kidney SNPs and 64 vascular SNPs. OUTCOMES & MEASUREMENTS: Vascular outcomes tested were blood pressure, coronary artery disease, carotid intima-media thickness, pulse wave velocity, retinal venular caliber, and brain white matter lesions. Kidney outcomes were estimated glomerular filtration rate and albuminuria. RESULTS: In general, we found that kidney disease variants were not associated with vascular phenotypes (127 of 133 tests were nonsignificant). The one exception was rs653178 near SH2B3 (SH2B adaptor protein 3), which showed direction-consistent association with systolic (P = 9.3 ×10(-10)) and diastolic (P = 1.6 ×10(-14)) blood pressure and coronary artery disease (P = 2.2 ×10(-6)), all previously reported. Similarly, the 64 SNPs associated with vascular phenotypes were not associated with kidney phenotypes (187 of 192 tests were nonsignificant), with the exception of 2 high-correlated SNPs at the SH2B3 locus (P = 1.06 ×10(-07) and P = 7.05 ×10(-08)). LIMITATIONS: The combined effect size of the SNPs for kidney and vascular outcomes may be too low to detect shared genetic associations. CONCLUSIONS: Overall, although we confirmed one locus (SH2B3) as associated with both kidney and cardiovascular disease, our primary findings suggest that there is little overlap between kidney and cardiovascular disease risk variants in the overall population. The reciprocal risks of kidney and cardiovascular disease may not be genetically mediated, but rather a function of the disease milieu itself.
Resumo:
Purpose: We previously demonstrated efficient retinal rescue of RPE65 mouse models (Rpe65-/- (Bemelmans et al, 2006) and Rpe65R91W/R91W mice) using a HIV1-derived lentiviral vector encoding for the mouse RPE65 cDNA. In order to optimize a lentiviral vector as an alternative tool for RPE65-derived Leber Congenital Amaurosis clinical trials, we evaluated the efficiency of an integration-deficient lentiviral vector (IDLV) encoding the human RPE65 cDNA to restore retinal function in the Rpe65R91W/R91W mice. Methods: An HIV-1-derived lentiviral vector expressing either the hrGFPII or the human Rpe65 cDNA under the control of a 0.8 kb fragment of the human Rpe65 promoter (R0.8) was produced by transient transfection of 293T cells. A LQ-integrase mutant was used to generate the IDLV vectors. IDLV-R0.8-hRPE65 or hrGFPII were injected subretinally into 1 month-old Rpe65R91W/R91W mice. Functional rescue was assessed by ERG (1 and 3 months post-injection) and cone survival by immunohistology. Results: An increased light sensitivity was detected by scotopic ERG in animals injected with IDLV-R0.8-hRPE65 compared to hrGFPII-treated animals or untreated mice. However the improvement was delayed compared to integration-proficient LV and observed at 3 months but not 1 month post-injection. Immunolabelling of cone markers showed an increased number of cones in the transduced area compared to control groups. Conclusions: The IDLV-R0.8-hRPE65 vectors allow retinal improvement in the Rpe65R91W/R91W mice. Both rod function and cone survival were demonstrated even if there is a delay in the rescue as assessed by scotopic ERG. Integration-deficient vectors minimize insertional mutagenesis and thus are safer candidates for human application. Further experiments using large animals are now needed to validate correct gene transfer and expression of the RPE65 gene as well as tolerance of the vector after subretinal injection before envisaging a clinical trial application.
Resumo:
Leukocoria in infants is always a danger signal as retinoblastoma, a malignant retinal tumor, is responsible for half of the cases in this age group. More common signs should also be considered suspicious until proved otherwise, such as strabismus, the second most frequent sign of retinoblastoma. Less frequent manifestations are inflammatory conditions resistant to treatment, hypopyon, orbital cellulitis, hyphema or heterochromia. Other causal pathologies, including persistent hyperplastic primary vitreous (PHPV), Coats' disease, ocular toxocariasis or retinopathy of prematurity, may also manifest the same warning signs and require specialized differential diagnosis. Members of the immediate family circle are most likely to notice the first signs, the general practitioner, pediatrician or general ophthalmologist the first to be consulted. On their attitude will depend the final outcome of this vision and life-threatening disease. Early diagnosis is vital.
Resumo:
Glucocorticoids (GCs) are routinely administered systemically or injected into the eye when treating numerous ocular diseases; however, their toxicity on the retinal microvasculature has not been previously investigated. In this article, the effects of hydrocortisone (Hydro), dexamethasone, dexamethasone-phosphate and triamcinolone acetonide (TA) were evaluated in vitro on human skin microcirculation cells and, bovine endothelial retinal cells, ex-vivo, on flat mounted rat retinas. The degree of GCs induced endothelial cell death varied according to the endothelial cell type and GCs chemical properties. GCs toxicity was higher in skin microvascular endothelial cells and for hydrophobic GC formulations. The mechanism of cell death differed between GCs, Hydro and TA activated the leukocyte elastase inhibitor/L-DNase II pathways but did not activate caspases. The mechanisms of cell death observed in cell cultures were similar to those observed in rat retinal explants. Taken together these results indicate that particular attention should be paid to the potential vascular side effects when administrating GCs clinically and in particular when developing sustained-release intraocular devices.
Resumo:
PURPOSE: To study VP22 light controlled delivery of antisense oligonucleotide (ODN) to ocular cells in vitro and in vivo. METHODS: The C-terminal half of VP22 was expressed in Escherichia coli, purified and mixed with 20 mer phosphorothioate oligonucleotides (ODNs) to form light sensitive complex particles (vectosomes). Uptake of vectosomes and light induced redistribution of ODNs in human choroid melanoma cells (OCM-1) and in human retinal pigment epithelial cells (ARPE-19) were studied by confocal and electron microscopy. The effect of vectosomes formed with an antisense ODN corresponding to the 3'-untranslated region of the human c-raf kinase gene on the viability and the proliferation of OCM-1 cells was assessed before and after illumination. Cells incubated with vectosomes formed with a mismatched ODN, a free antisense ODN or a free mismatched ODN served as controls. White light transscleral illumination was carried out 24 h after the intravitreal injection of vectosomes in rat eyes. The distribution of fluorescent vectosomes and free fluorescent ODN was evaluated on cryosections by fluorescence microscopy before, and 1 h after illumination. RESULTS: Overnight incubation of human OCM-1 and ARPE-19 cells with vectosomes lead to intracellular internalization of the vectosomes. When not illuminated, internalized vectosomes remained stable within the cell cytoplasm. Disruption of vectosomes and release of the complexed ODN was induced by illumination of the cultures with a cold white light or a laser beam. In vitro, up to 60% inhibition of OCM-1 cell proliferation was observed in illuminated cultures incubated with vectosomes formed with antisense c-raf ODN. No inhibitory effect on the OCM-1 cell proliferation was observed in the absence of illumination or when the cells are incubated with a free antisense c-raf ODN and illuminated. In vivo, 24 h after intravitreal injection, vectosomes were observed within the various retinal layers accumulating in the cytoplasm of RPE cells. Transscleral illumination of the injected eyes with a cold white light induced disruption of the vectosomes and a preferential localization of the "released" ODNs within the cell nuclei of the ganglion cell layer, the inner nuclear layer and the RPE cells. CONCLUSIONS: In vitro, VP22 light controlled delivery of ODNs to ocular cells nuclei was feasible using white light or laser illumination. In vivo, a single intravitreal injection of vectosomes, followed by transscleral illumination allowed for the delivery of free ODNs to retinal and RPE cells.
Resumo:
PURPOSE: To evaluate the long-term outcome (up to 7 years) of presumed ocular tuberculosis (TB) when the therapeutic decision was based on WHO guidelines. METHODS: Twelve out of 654 new uveitic patients (1998-2004) presented with choroiditis and positive tuberculosis skin test (TST) (skin lesion diameter >15 mm). Therapy was administered according to WHO recommendations after ophthalmic and systemic investigation. The area size of ocular lesions at presentation and after therapy, measured on fluorescein and indocyanine green angiographies, was considered the primary outcome. Relapse of choroiditis was considered a secondary outcome. The T-SPOT TB test was performed when it became available. RESULTS: Visual acuity significantly improved after therapy (p=0.0357). The mean total surface of fluorescein lesions at entry was 44.8 ± 20.9 (arbitrary units) and decreased to 32.5 ± 16.9 after therapy (p=0.0165). The mean total surface of indocyanine green lesions at entry was 24.5 ± 13.3 and decreased to 10.8 ± 5.4 after therapy (p=0.0631). The T-SPOT TB revealed 2 false TST-positive results. The mean follow-up was 4.5 ± 1.5 years. Two relapses out of 10 confirmed ocular TB was observed after complete lesion healing, 2.5 years and 4.5 years after therapy, respectively. CONCLUSIONS: A decrease of ocular lesion mean size and a mean improvement of VA were observed after antituberculous therapy. Our long-term follow-up of chorioretinal lesions demonstrated relapse of ocular tuberculosis in 10% of patients with confirmed ocular TB, despite complete initial retinal scarring.
Resumo:
PURPOSE: To describe a patient with metastatic choroidal paraganglioma that was locally controlled with radiotherapy. DESIGN: Interventional clinicopathologic case report. PARTICIPANT: One patient with metastatic choroidal paraganglioma. METHODS: Interventional clinicopathologic case report and systematic search of the literature. MAIN OUTCOME MEASURES: Description of clinicopathologic features, treatment methods, and outcome. RESULTS: A 50-year-old man had a nonpigmented atypical choroidal mass with secondary retinal detachment in the left eye. After incisional biopsy, the diagnosis of paraganglioma was established. Metastatic work-up revealed vertebral, mediastinal, and pulmonary metastases of a nonsecretory, malignant paraganglioma without tracer uptake. The primary tumor was not identified. The ocular tumor regressed after stereotaxic radiotherapy. Two years later, recurrent lesions developed in the contralateral eye, which also was irradiated. CONCLUSIONS: Malignant paraganglioma can metastasize in the choroid and should be included in the differential diagnosis of a nonpigmented choroidal mass. Stereotaxic radiation therapy is an effective treatment method. To the authors' knowledge, this is the first report of a patient with choroidal paraganglioma. FINANCIAL DISCLOSURE(S): The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Resumo:
PURPOSE: To investigate six cases of annular cyclitis. METHODS: All patients with impairment of visual acuity underwent complete ophthalmologic examination, color fundus photography, laboratory tests and fluorescein angiography. Indocyanine green (ICG) angiography and B-scan ultrasonography were also performed in three cases in order to diagnose the disease. RESULTS: All patients presented a unilateral or bilateral granulomatous uveitis, associated with inflammatory annular cyclitis. They had a shallow anterior chamber, a mildly elevated intraocular pressure (under 25 mm Hg) and an annular serous retinal detachment. A resolution was observed after specific therapy associated with systemic prednisolone therapy and antiglaucomatous drops. CONCLUSION: This is the first description of an observational study of six patients with inflammatory annular cyclitis.