376 resultados para alpha-amylase inhibitor
Resumo:
Résumé La iododeoxyuridine (IdUrd), une fois marqué au 123I ou au 125I, est un agent potentiel pour des thérapies par rayonnements Auger. Cependant, des limitations restreignent son incorporation dans l'ADN. Afin d'augmenter celle-ci, différents groupes ont étudié la fluorodeoxyuridine (FdUrd), qui favorise l'incorporation d'analogue de la thymidine, sans toutefois parvenir à une toxicité associé plus importante. Dans notre approche, 3 lignées cellulaires de glioblastomes humains et une lignée de cancer ovarien ont été utilisées. Nous avons observé, 16 à 24 h après un court pré-traitement à la FdUrd, un fort pourcentage de cellules s'accumulant en phase S. Plus qu'une accumulation, c'était une synchronisation des cellules, celles-ci restant capables d'incorporer la radio-IdIrd et repartant dans le cycle cellulaire. De plus, ces cellules accumulées après un pré-traitement à la FdUrd étaient plus radio-sensibles. Après le même intervalle de 16 à 24 h suivant la FdUrd, les 4 lignées cellulaires ont incorporé des taux plus élevés de radio-IdUrd que sans ce prétraitement. Une corrélation temporelle entre l'accumulation des cellules en phase S et la forte incorporation de radio-IdUrd a ainsi été révélée 16 à 24 h après pré-traitement à la FdUrd. Les expériences de traitement par rayonnements Auger sur les cellules accumulées en phase S ont montré une augmentation significative de l'efficacité thérapeutique de 125I-IdUrd comparé aux cellules non prétraitées à la FdUrd. Une première estimation a permis de déterminer que 100 désintégrations de 125I par cellules étant nécessaires afin d'atteindre l'efficacité thérapeutique. De plus, p53 semble jouer un rôle dans l'induction directe de mort cellulaire après des traitements par rayonnements Auger, comme indiqué par les mesures par FACS d'apoptose et de nécrose 24 et 48 h après le traitement. Concernant les expériences in vivo, nous avons observé une incorporation marquée de la radio-IdUrd dans l'ADN après un pré-traitement à la FdUrd dans un model de carcinomatose ovarienne péritonéale. Une augmentation encore plus importante a été observée après injection intra-tumorale dans des transplants sous-cutanés de glioblastomes sur des souris nues. Ces modèles pourraient être utilisés pour de plus amples études de diffusion de radio-IdUrd et de thérapie par rayonnement Auger. En conclusion, ce travail montre une première application réussie de la FdUrd afin d'accroître l'efficacité de la radio-IdUrd par traitements aux rayonnements Auger. La synchronisation des cellules en phase S combinée avec la forte incorporation de radio-IdUrd dans l'ADN différées après un pré-traitement à la FdUrd ont montré le gain thérapeutique attendu in vitro. De plus, des études in vivo sont tout indiquées après les observations encourageantes d'incorporation de radio-IdUrd dans les models de transplants sous-cutanés de glioblastomes et de tumeurs péritonéales ovariennes. Summary Iododeoxyuridine (IdUrd), labelled with 123I or 125I, could be a potential Auger radiation therapy agent. However, limitations restrict its DNA incorporation in proliferating cells. Therefore, fluorodeoxyuridine (FdUrd), which favours incorporation of thymidine analogues, has been studied by different groups in order to increase radio-IdUrd DNA incorporation, however therapeutic efficacy increase could not be reached. In our approach, 3 human glioblastoma cell lines with different p53 expression and one ovarian cancer line were pre-treated with various FdUrd conditions. We observed a high percentage of cells accumulating in early S phase 16 to 24 h after a short and non-toxic FdUrd pre-treatment. More than an accumulation, this was a synchronization, cells remaining able to incorporate radio-IdUrd and re-entering the cell cycle. Furthermore, the S phase accumulated cells post FdUrd pre-treatment were more radiosensitive. After the same delay of 16 to 24 h post FdUrd pre-treatment, the 4 cell lines were incorporating higher rates of radio-IdUrd compared with untreated cells. A time correlation between S phase accumulation and high radio-IdUrd incorporation was therefore revealed 16 to 24 h post FdUrd pre-treatment. Auger radiation treatment experiments performed on S phase enriched cells showed a significant increase of killing efficacy of 125I-IdUrd compared with cells not pre-treated with FdUrd. A first estimation indicates further that about 100 125I decays were required to reach killing in the targeted cells. Moreover, p53 might play a role on the direct induction of cell death pathways after Auger radiation treatments, as indicated by differential apoptosis and necrosis induction measured by FACS 24 and 48 h after treatment initiation. Concerning in vivo results, we observed a marked DNA incorporation increase of radio-IdUrd after FdUrd pre-treatment in peritoneal carcinomatosis in SCID mice. Even higher incorporation increase was observed after intra-tumoural injection of radio-IdUrd in subcutaneous glioblastoma transplants in nude mice. These tumour models might be further useful for diffusion of radio-IdUrd and Auger radiation therapy studies. In conclusion, these data show a first successful application of thymidine synthesis inhibition able to increase the efficacy of radio-IdUrd Auger radiation treatment. The S phase synchronization combined with a high percentage DNA incorporation of radio-IdUrd delayed post FdUrd pre-treatment provided the expected therapeutic gain in vitro. Further in vivo studies are indicated after the observations of encouraging radio-IdUrd uptake experiments in glioblastoma subcutaneous xenografts and in an ovarian peritoneal carcinomatosis model.
Resumo:
Orosomucoid (ORM) phenotyping has been performed on 329 unrelated Swiss subjects, using immobilized pH gradients with 8 M urea and 2% v/v 2-mercaptoethanol followed by immunoblotting. After desialylation the band patterns of ORM confirmed that the polymorphism of the structural locus ORM1 is controlled by three codominant autosomal alleles (ORM1*F1, ORM1*S and ORM1*F2). One rare and one new allele were detected. The rare variant, tentatively assigned to the second structural locus ORM2, is observed in a cathodal position and named ORM2 B1. The new variant, tentatively assigned to the first structural locus ORM1, is observed in a region located between ORM1 S and ORM1 F2, and named ORM1 F3. Moreover, the pI values of the ORM variants have been measured accurately with Immobiline Dry Plates (LKB): they were found to be within the pH range 4.93-5.14.
Resumo:
BACKGROUND: Second line endocrine therapy has limited antitumour activity. Fulvestrant inhibits and downregulates the oestrogen receptor. The mitogen-activated protein kinase (MAPK) pathway is one of the major cascades involved in resistance to endocrine therapy. We assessed the efficacy and safety of fulvestrant with selumetinib, a MEK 1/2 inhibitor, in advanced stage breast cancer progressing after aromatase inhibitor (AI). PATIENTS AND METHODS: This randomised phase II trial included postmenopausal patients with endocrine-sensitive breast cancer. They were ramdomised to fulvestrant combined with selumetinib or placebo. The primary endpoint was disease control rate (DCR) in the experimental arm. ClinicalTrials.gov Indentifier: NCT01160718. RESULTS: Following the planned interim efficacy analysis, recruitment was interrupted after the inclusion of 46 patients (23 in each arm), because the selumetinib-fulvestrant arm did not reach the pre-specified DCR. DCR was 23% (95% confidence interval (CI) 8-45%) in the selumetinib arm and 50% (95% CI 27-75%) in the placebo arm. Median progression-free survival was 3.7months (95% CI 1.9-5.8) in the selumetinib arm and 5.6months (95% CI 3.4-13.6) in the placebo arm. Median time to treatment failure was 5.1 (95% CI 2.3-6.7) and 5.6 (95% CI 3.4-10.2) months, respectively. The most frequent treatment-related adverse events observed in the selumetinib-fulvestrant arm were skin disorders, fatigue, nausea/vomiting, oedema, diarrhoea, mouth disorders and muscle disorders. CONCLUSIONS: The addition of selumetinib to fulvestrant did not show improving patients' outcome and was poorly tolerated at the recommended monotherapy dose. Selumetinib may have deteriorated the efficacy of the endocrine therapy in some patients.
Resumo:
Medulloblastoma (MB) is the most common malignant brain tumor in children and is associated with a poor outcome. cMYC amplification characterizes a subgroup of MB with very poor prognosis. However, there exist so far no targeted therapies for the subgroup of MB with cMYC amplification. Here we used kinome-wide RNA interference screening to identify novel kinases that may be targeted to inhibit the proliferation of c-Myc-overexpressing MB. The RNAi screen identified a set of 5 genes that could be targeted to selectively impair the proliferation of c-Myc-overexpressing MB cell lines: AKAP12 (A-kinase anchor protein), CSNK1α1 (casein kinase 1, alpha 1), EPHA7 (EPH receptor A7) and PCTK1 (PCTAIRE protein kinase 1). When using RNAi and a pharmacological inhibitor selective for PCTK1, we could show that this kinase plays a crucial role in the proliferation of MB cell lines and the activation of the mammalian target of rapamycin (mTOR) pathway. In addition, pharmacological PCTK1 inhibition reduced the expression levels of c-Myc. Finally, targeting PCTK1 selectively impaired the tumor growth of c-Myc-overexpressing MB cells in vivo. Together our data uncover a novel and crucial role for PCTK1 in the proliferation and survival of MB characterized by cMYC amplification.
Resumo:
BACKGROUND: Activation of the immune system affects the circadian clock. Tumor necrosis factor (TNF) and Interleukin (IL)-1β inhibit the expression of clock genes including Period (Per) genes and the PAR-bZip clock-controlled gene D-site albumin promoter-binding protein (Dbp). These effects are due to cytokine-induced interference of E-box mediated transcription of clock genes. In the present study we have assessed the two E-box binding transcriptional regulators Twist1 and Twist2 for their role in cytokine induced inhibition of clock genes. METHODS: The expression of the clock genes Per1, Per2, Per3 and of Dbp was assessed in NIH-3T3 mouse fibroblasts and the mouse hippocampal neuronal cell line HT22. Cells were treated for 4h with TNF and IL-1β. The functional role of Twist1 and Twist2 was assessed by siRNAs against the Twist genes and by overexpression of TWIST proteins. In luciferase (luc) assays NIH-3T3 cells were transfected with reporter gene constructs, which contain a 3xPer1 E-box or a Dbp E-box. Quantitative chromatin immunoprecipitation (ChIP) was performed using antibodies to TWIST1 and CLOCK, and the E-box consensus sequences of Dbp (CATGTG) and Per1 E-box (CACGTG). RESULTS: We report here that siRNA against Twist1 protects NIH-3T3 cells and HT22 cells from down-regulation of Period and Dbp by TNF and IL-1β. Overexpression of Twist1, but not of Twist2, mimics the effect of the cytokines. TNF down-regulates the activation of Per1-3xE-box-luc, the effect being prevented by siRNA against Twist1. Overexpression of Twist1, but not of Twist2, inhibits Per1-3xE-box-luc or Dbp-E-Box-luc activity. ChIP experiments show TWIST1 induction by TNF to compete with CLOCK binding to the E-box of Period genes and Dbp. CONCLUSION: Twist1 plays a pivotal role in the TNF mediated suppression of E-box dependent transactivation of Period genes and Dbp. Thereby Twist1 may provide a link between the immune system and the circadian timing system.