382 resultados para skin carcinoma
Resumo:
SUMMARY The results presented here contribute to a better understanding of the crucial molecular relationships and signalling cues exchanged by several fundamental cell types (epidermal keratinocytes, dermal fibroblasts, immune and endothelial cells) of the skin. Importantly we provide evidence to directly implicate Wnt/ß-catenin signalling as a putative player in different cell types (keratinocytes and neutrophils) in mediation of the cutaneous inflammatory response (Fart A). Finally we highlight the importance of several molecules, specifically expressed in the hair follicle stem cell niche to the morphogenesis and homeostasis of the hair follicle (Part B). PART A Currently the body of work pertaining to Wnt signalling and immune cells largely focuses on Wnt signalling in the development of these cells. The data presented here suggests a novel mechanism in which Wnt signalling appears to modulate immune cell recruitment to the skin. Keratinocytes are major contributors to early inflammatory responses by the release of chemokines which recruit immune cells. The resultant inflammatory response is a dynamic process of sequentially infiltrating immune cells governed by a network of growth factors, chemokines and cytokines. In wild type mice the response is typified by a rapid and substantial infiltration of neutrophils followed at later time points by macrophages and Tcells. The expression of the canonical Wnt pathway activating ligand, Wnt3a, is able to induce a strong neutrophil infiltration in the dermis. This response originates in keratinocytes, as it is abrogated upon keratinocyte-specific ablation of ß-catenin. Notably, this suggests that the crucial cross talk between these resident cells and recruited immune cells is, in part, mediated by Wnt signalling. In corroboration of this role of Wnt-mediated recruitment of neutrophils, expression of the Wnt inhibitory ligand sFRPI during acute inflammation results in a dramatic 'dampening' of immune cell infiltration in particular of neutrophil chemoattraction. Importantly, an intrinsic Wnt signalling pathway is essential for neutrophil chemoattraction in response to inflammatory stimuli. There is a marked reduction of neutrophil infiltration in mice grafted with a ß-catenin deficient bone marrow upon TPA induced cutaneous inflammation. Additionally, neutrophils lacking Wnt/ß-catenin fail to respond to IFNγ, an early inflammatory cue, in vitro. In combination, these data indicate a potent function of Wnt signalling in immune cell recruitment and the modulation of the inflammatory response. PART B Tissue specific stem cells form the cellular base on which tissue homeostasis and repair of adult tissue relies. The maintenance of this stem cell pool is highly dependent on the immediate environment or niche. We have identified three genes, the fibroblast growth factor receptor 1 (FGFR1), serpin protease inhibitor (serpin F1) and the haematopoietic cell phosphatase (Hcph) to be specifically expressed in a small population of stromal cells which are in close contact to bulge stem cells. These specialized stromal cells might represent an essential mesenchymal component of the skin stem cell niche and may regulate stem cell proliferation and differentiation. Multiple FGFR1 isoforms are generated through alternate transcript splicing and are able to interact with both FGFs and cell adhesion molecules. Two predominant forms of the receptor are FGFR1-α and FGFR1-ß. Expression of a dominant negative form of the alpha isoform prevents hair follicle morphogenesis altogether. Given that FGFR1-ß signals principally through the FGF ligands, this data indicates that FGF signalling is dispensable for follicle morphogenesis. Moreover the loss of follicular morphogenesis upon suggests a requirement for signalling via cell adhesion molecule association with the receptor as FGFR1 α has a greater affinity for these molecules. The expression of the second candidate niche gene serpin f1, lead to the complete ablation of hair follicle morphogenesis. The serpin f1 product, pigment-epithelial derived factor (PEDF) has potent anti-angiogenic effects. Immunohistochemical analysis using CD31, a endothelial cell marker, revealed that although these cells are present, they have are disorganised and do not form vessels. Interestingly, endothelial cells have been found to contribute to the neuronal stem cell niche and our results suggest a similar mechanism in the skin. SHP1, the Hcph gene product, is a phosphatase which acts in the haematopoetic system. Motheaten mice carrying spontaneous mutations in the Hcph gene have patchy alopecia in their skin and severe defects in their haematopoietic system. However the haematopoietic rescue of the mouse does not result in normal follicular homeostasis. Additionally, ablation of Hcph in either the dermal or keratinocyte compartments of the skin produces hair follicles with abberant morphologies. This data indicates that although SHP1 is not essential for hair follicle morphogenesis it is required in both epidermal and dermal compartments to maintain follicular morphology. RÉSUMÉ PARTIE A Jusqu'à présent, les travaux dédiés à l'étude de la voie de signalisation Wnt dans le système immunitaire se sont essentiellement concentrés sur son rôle dans le développement des cellules immunitaires. Les données présentées ici suggèrent fortement et de manière nouvelle, l'existence d'un mécanisme par lequel la voie de signalisation Wnt/ß-caténine module le recrutement de cellules immunitaires dans un tissu périphérique, la peau, et ainsi la réponse inflammatoire cutanée. La réponse inflammatoire cutanée est un processus dynamique d'infiltration séquentielle de diverses cellules immunitaires, orchestré par un réseau de facteurs de croissance, chémokines et cytokines. Les kératinocytes sont des contributeurs majeurs à la réponse inflammatoire précoce par la libération de chémokines qui permettent ensuite de recruter les cellules immunitaires. Dans des souris sauvages, la réponse est d'abord caractérisée par une infiltration rapide et substantielle de neutrophiles, suivie par celle des macrophages et des lymphocytes T. L'expression d'un ligand activateur de le voie canonique de signalisation Wnt (après injection infra-dermique de fibroblastes sur-exprimant Wnt-3a) induit une infiltration dermique très marquée de neutrophiles. De plus, la réponse est éliminée en l'absence de ß-caténine spécifiquement dans les kératinocytes, indiquant que ces cellules sont à l'origine de la réponse. De manière remarquable, ceci suggère qu'une signalisation cruciale entre ces cellules résidentes de la peau et les cellules immunitaires recrutées est, au moins en partie, médiée par la voie Wnt. Corroborant ce rôle de la voie Wnt/ß-caténine dans le recrutement des neutrophiles, l'expression d'un ligand inhibiteur de la voie (sFRP1) résulte au cours d'une inflammation aigüe en une réduction spectaculaire de l'infiltration des cellules immunitaires en général, et des neutrophiles en particulier. De manière importante, la voie de signalisation Wnt est intrinsèquement requise pour la chémoattraction des neutrophiles en réponse à un stimulus inflammatoire. En effet, suite à une inflammation cutanée induite par un ester de phorbol (TPA), une réduction notable de l'infiltration des neutrophiles est observée dans des souris préalablement greffées avec de la moelle osseuse constituée de cellules déficientes en ß-caténine. De plus, in vitro, les neutrophiles sans ß-caténine ne répondent pas à une stimulation par l'interféron γ, qui est pourtant un signal inflammatoire établi in vivo. En conclusion, nos données indiquent que la voie de signalisation Wnt/ß-caténine joue une fonction active dans le recrutement des cellules immunitaires vers un organe périphérique, la peau, ainsi que dans la modulation, à plusieurs niveaux, de la réponse inflammatoire cutanée. PARTIE B Les cellules souches tissu-spécifiques forment la base cellulaire sur laquelle repose l'homéostase et la réparation tissulaires chez l'adulte. La maintenance de ce réservoir de cellules souches est hautement dépendante de leur environnement cellulaire immédiat, encore appelé «niche des cellules souches». Dans la peau, ces cellules stromales spécialisées représentent un compartiment mésenchymateux essentiel de la niche des cellules souches en régulant leurs prolifération et différentiation. Nous avons identifié trois gènes, le «récepteur 1 àux facteurs de croissance des fibroblastes » (Fgfr1 ), l' «inhibiteur de protéase à sérine » (serpinf1 ou pedf) et la « phosphatase des cellules hématopoiétiques » (Hcph ou Ptpn6), comme spécifiquement exprimés par une petite population de cellules stromales qui sont étroitement associées aux cellules souches de la peau (localisées au niveau du bombement du follicule pileux). Pour analyser leur fonction dans ce contexte, nous avons utilisé un test de reconstitution complète de peau murine en combinaison à des. transductions géniques basées sur l'utilisation de lentivirus. Ce test repose sur le mélange de deux compartiments cellulaires, épidermique (kératinocytes) et dermique (fibroblastes), greffés sur une zone ouverte de peau du dos d'une souris pour ensemble reconstituer la peau. Des isoformes multiples de FGFR1 sont générées par épissage alternatif de transcrits et sont capables d'interagir à la fois avec les FGFs (facteurs de croissance des fibroblastes) et les molécules d'adhésion cellulaires. Les deux formes prédominantes du récepteur, FGFR1-α et FGFR1-ß, ne différent que par le «domaine ressemblant aux immunoglobulines 1 » (immunoglobulin-like 1 domain), absent de FGFR1-ß. De plus, FGFR1-ß a une affinité plus grande pour les FGFs et plus faible pour les molécules d'adhésion cellulaires telles que la Ncadhérine (connue pour activer FGFR). La sur-expression de l'une ou l'autre des formes n'empêche pas la morphogenèse folliculaire mais conduit à la formation de follicules aberrants. Toutefois, une différence phénotypique majeure est observée lorsqu'une forme «Dominant-Négatif » (DN) est exprimée dans le compartiment dermique. La sur-expression de FGFR1-ß DN conduit en effet à la formation de follicules petits et tronqués, avec des gaines épithéliales et un bulbe élargis ainsi qu'une petite papille dermique. Par contre, l'expression de FGFR1-α DN abolit complètement la morphogenèse folliculaire. Etant donné que la signalisation par FGFR1-ß est principalement dépendante des ligands FGFs, ces données indiquent que la signalisation par ceux-cì est non-nécessaire à la morphogenèse folliculaire. De plus, l'abolition du processus par la sur-expression de FGFR1-a DN suggëre une signalisation nécessaire entre le récepteur FGFR1 et une ou des molécules d'adhésion cellulaire. L'expression de notre second candidat comme gène spécifique de la niche des cellules souches de la peau, serpinf1, prévient la morphogenèse folliculaire. Seules de petites structures ressemblant à des cystes sont observées après reconstitution de la peau. De plus, dans ces transplants, aucune cellule CD34-positive (marqueur des cellules souches) n'est retrouvée associé à ces cystes. Le produit du gène serpin f1, le «facteur dérivé d'épithélium pigmentaire » (PEDF) est un puissant facteur anti-angiogénique. Nous avons donc analysé la vascularisation des transplants par immunohistochirnies utilisant CD31, un marqueur des cellules endothéliales. Nos résultats révèlent que les cellules endothéliales sont bien présentes, mais de manière désorganisée et ne formant pas de vaisseaux. De manière intéressante, les cellules endothéliales contribuent activement à la niche des cellules souches neuronales, et nos résultats suggèrent donc l'existence possible d'un mécanisme similaire dans la peau. SHP1, le produit du gène Hcph, est une phosphatase quì agit dans le système hématopoiétique. Les souris « motheaten »qui portent des mutations spontanées du gène ont une alopécie inégale au niveau de la peau et de sévères troubles du système hématopoiétique. Pour s'assurer que le phénotype observé au niveau de la peau n'est pas une conséquence d'un défaut du système hématopoiétique, nous avons transplanté des souris Hcph -/- avec de la moelle osseuse sauvage afin de restaurer la fonction de SHP 1 dans le système hématopoiétique. Toutefois, le défaut de morphologie folliculaire est maintenu. De plus, l'ablation d'Hcph dans le compartiment dermique ou épidermique d'essais de reconstitution de peau conduit à la production de follicules pileux avec des morphologies aberrantes. Ces données indiquent que SHP1 n'est pas essentiel à la morphogenèse folliculaire mais est toutefois requis à la fois dans les compartiments épidermiques et dermiques pour la maintenance de la forme du follicule.
Resumo:
With six targeted agents approved (sorafenib, sunitinib, temsirolimus, bevacizumab [+interferon], everolimus and pazopanib), many patients with metastatic renal cell carcinoma (mRCC) will receive multiple therapies. However, the optimum sequencing approach has not been defined. A group of European experts reviewed available data and shared their clinical experience to compile an expert agreement on the sequential use of targeted agents in mRCC. To date, there are few prospective studies of sequential therapy. The mammalian target of rapamycin (mTOR) inhibitor everolimus was approved for use in patients who failed treatment with inhibitors of vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFR) based on the results from a Phase III placebo-controlled study; however, until then, the only licensed agents across the spectrum of mRCC were VEGF(R) inhibitors (sorafenib, sunitinib and bevacizumab + interferon), and as such, a large body of evidence has accumulated regarding their use in sequence. Data show that sequential use of VEGF(R) inhibitors may be an effective treatment strategy to achieve prolonged clinical benefit. The optimal place of each targeted agent in the treatment sequence is still unclear, and data from large prospective studies are needed. The Phase III AXIS study of second-line sorafenib vs. axitinib (including post-VEGF(R) inhibitors) has completed, but the data are not yet published; other ongoing studies include the Phase III SWITCH study of sorafenib-sunitinib vs. sunitinib-sorafenib (NCT00732914); the Phase III 404 study of temsirolimus vs. sorafenib post-sunitinib (NCT00474786) and the Phase II RECORD 3 study of sunitinib-everolimus vs. everolimus-sunitinib (NCT00903175). Until additional data are available, consideration of patient response and tolerability to treatment may facilitate current decision-making regarding when to switch and which treatment to switch to in real-life clinical practice.
Resumo:
Photons participate in many atomic and molecular interactions and processes. Recent biophysical research has discovered an ultraweak radiation in biological tissues. It is now recognized that plants, animal and human cells emit this very weak biophotonic emission which can be readily measured with a sensitive photomultiplier system. UVA laser induced biophotonic emission of cultured cells was used in this report with the intention to detect biophysical changes between young and adult fibroblasts as well as between fibroblasts and keratinocytes. With suspension densities ranging from 1-8x106 cells/ml, it was evident that an increase of the UVA-laser-light induced photon emission intensity could be observed in young as well as adult fibroblastic cells. By the use of this method to determine ultraweak light emission, photons in cell suspensions in low volumes (100 mu l) could be detected, in contrast to previous procedures using quantities up to 10 ml. Moreover, the analysis has been further refined by turning off the photomultiplier system electronically during irradiation leading to the first measurements of induced light emission in the cells after less than 10 mu s instead of more than 100 milliseconds. These significant changes lead to an improvement factor up to 106 in comparison to classical detection procedures. In addition, different skin cells as fibroblasts and keratinocytes stemining from the same donor were measured using this new highly sensitive method in order to find new biophysical insight of light pathways. This is important in view to develop new strategies in biophotonics especially for use in alternative therapies.
Resumo:
OBJECTIVE: To determine the frequency of recent skin injuries in children with neuromotor disabilities and its association with disability. DESIGN: Cross-sectional study of 168 children with neuromotor disabilities aged 2-16 years. SETTING: Two outpatient child rehabilitation centres. MAIN OUTCOME MEASURES: Children were classified as unrestricted walkers, restricted walkers or wheelchair dependent. Each participant's body surface was systematically examined for recent skin injuries with the exception of the anal-genital area. RESULTS: The mean age of our sample was 7.8 (SD 3.7) years with a 3:2 male/female ratio. Overall, 64% had cerebral palsy, 17% a neuromuscular disease and 19% other motor disabilities. Participants had on average 5.3 (SD 4.5) recent skin injuries (max 19), of which 2.5 were bruises (SD 3.3, max 16), 2.4 were abrasions, scratches or cuts (SD 3.0, max 16) and 0.4 were pressure lesions (SD 0.8, max 4). There was a significant decrease in the frequency of recent skin injuries and of bruises with increasing severity of motor disability. Most of this variation was accounted for by injuries to the lower limbs. There were no significant effects of gender, learning disabilities or other comorbidities. CONCLUSIONS: Children with neuromotor disabilities present a progressive reduction in the number of skin injuries with decreasing mobility. Therefore, recent skin injuries in this population which are unusual by their number, appearance or distribution, should raise at least the same level of suspicion for physical abuse as in children without disabilities.
Resumo:
The epidermal growth factor (EGF) receptor/ligand system stimulates multiple pathways of signal transduction, and is activated by various extracellular stimuli and inter-receptor crosstalk signaling. Aberrant activation of EGF receptor (EGFR) signaling is found in many tumor cells, and humanized neutralizing antibodies and synthetic small compounds against EGFR are in clinical use today. However, these drugs are known to cause a variety of skin toxicities such as inflammatory rash, skin dryness, and hair abnormalities. These side effects demonstrate the multiple EGFR-dependent homeostatic functions in human skin. The epidermis and hair follicles are self-renewing tissues, and keratinocyte stem cells are crucial for maintaining these homeostasis. A variety of molecules associated with the EGF receptor/ligand system are involved in epidermal homeostasis and hair follicle development, and the modulation of EGFR signaling impacts the behavior of keratinocyte stem cells. Understanding the roles of the EGF receptor/ligand system in skin homeostasis is an emerging issue in dermatology to improve the current therapy for skin disorders, and the EGFR inhibitor-associated skin toxicities. Besides, controlling of keratinocyte stem cells by modulating the EGF receptor/ligand system assures advances in regenerative medicine of the skin. We present an overview of the recent progress in the field of the EGF receptor/ligand system on skin homeostasis and regulation of keratinocyte stem cells.
Resumo:
OBJECTIVE: To assess whether Jass staging enhances prognostic prediction in Dukes' B colorectal carcinoma. DESIGN: A historical cohort observational study. SETTING: A university tertiary care centre, Switzerland. SUBJECTS: 108 consecutive patients. INTERVENTIONS: Curative resection of Dukes' B colorectal carcinoma between January 1985 and December 1988, Patients with familial adenomatous polyposis; hereditary non-polyposis colorectal cancer; Crohns' disease; ulcerative colitis and synchronous and recurrent tumours were excluded. A comparable group of 155 consecutive patients with Dukes' C carcinoma were included for reference purposes. MAIN OUTCOME MEASURES: Disease free and overall survival for Dukes' B and overall survival for Dukes' C tumours. RESULTS: Dukes' B tumours in Jass group III or with an infiltrated margin had a significantly worse disease-free survival (p = 0.001 and 0.0001, respectively) and those with infiltrated margins had a significantly worse overall survival (p = 0.002). Overall survival among those with Dukes' B Jass III and Dukes' B with infiltrated margins was no better than overall survival among all patients with Dukes' C tumours. CONCLUSION: Jass staging and the nature of the margin of invasion allow patients undergoing curative surgery for Dukes' B colorectal carcinoma to be separated into prognostic groups. A group of patients with Dukes' B tumours whose prognosis is inseparable from those with Dukes' C tumours can be identified, the nature of the margin of invasion being used to classify a larger number of patients.
Resumo:
The incidence of hepatocellular carcinoma (HCC) is increasing in Western countries. Although several clinical factors have been identified, many individuals never develop HCC, suggesting a genetic susceptibility. However, to date, only a few single-nucleotide polymorphisms have been reproducibly shown to be linked to HCC onset. A variant (rs738409 C>G, encoding for p.I148M) in the PNPLA3 gene is associated with liver damage in chronic liver diseases. Interestingly, several studies have reported that the minor rs738409[G] allele is more represented in HCC cases in chronic hepatitis C (CHC) and alcoholic liver disease (ALD). However, a significant association with HCC related to CHC has not been consistently observed, and the strength of the association between rs738409 and HCC remains unclear. We performed a meta-analysis of individual participant data including 2,503 European patients with cirrhosis to assess the association between rs738409 and HCC, particularly in ALD and CHC. We found that rs738409 was strongly associated with overall HCC (odds ratio [OR] per G allele, additive model=1.77; 95% confidence interval [CI]: 1.42-2.19; P=2.78 × 10(-7) ). This association was more pronounced in ALD (OR=2.20; 95% CI: 1.80-2.67; P=4.71 × 10(-15) ) than in CHC patients (OR=1.55; 95% CI: 1.03-2.34; P=3.52 × 10(-2) ). After adjustment for age, sex, and body mass index, the variant remained strongly associated with HCC. Conclusion: Overall, these results suggest that rs738409 exerts a marked influence on hepatocarcinogenesis in patients with cirrhosis of European descent and provide a strong argument for performing further mechanistic studies to better understand the role of PNPLA3 in HCC development.
Resumo:
Upward trends in mortality from hepatocellular carcinoma (HCC) were recently reported in the United States and Japan. Comprehensive analyses of most recent data for European countries are not available. Age-standardized (world standard) HCC rates per 100,000 (at all ages, at age 20-44, and age 45-59 years) were computed for 23 European countries over the period 1980-2004 using data from the World Health Organization. Joinpoint regression analysis was used to identify significant changes in trends, and annual percent change were computed. Male overall mortality from HCC increased in Austria, Germany, Switzerland, and other western countries, while it significantly decreased over recent years in countries such as France and Italy, which had large upward trends until the mid-1990s. In the early 2000s, among countries allowing distinction between HCC and other liver cancers, the highest HCC rates in men were in France (6.8/100,000), Italy (6.7), and Switzerland (5.9), whereas the lowest ones were in Norway (1.0), Ireland (0.8), and Sweden (0.7). In women, a slight increase in overall HCC mortality was observed in Spain and Switzerland, while mortality decreased in several other European countries, particularly since the mid-1990s. In the early 2000s, female HCC mortality rates were highest in Italy (1.9/100,000), Switzerland (1.8), and Spain (1.5) and lowest in Greece, Ireland, and Sweden (0.3). In most countries, trends at age 45-59 years were consistent with overall ones, whereas they were more favorable at age 20-44 years in both sexes. CONCLUSION: HCC mortality remains largely variable across Europe. Favorable trends were observed in several European countries mainly over the last decade, particularly in women and in young adults.
Resumo:
CD1d is a major histocompatibility complex class 1-like molecule that regulates the function and development of natural killer T (NKT) cells. Previously, we identified a critical role for the CD1d-NKT cell arm of innate immunity in promoting the development of UVB-induced p53 mutations, immune suppression, and skin tumors. Sunburn, an acute inflammatory response to UVB-induced cutaneous tissue injury, represents a clinical marker for non-melanoma skin cancer (NMSC) risk. However, the innate immune mechanisms controlling sunburn development are not considered relevant in NMSC etiology, and remain poorly investigated. Here we found that CD1d knockout (CD1d(-/-)) mice resist UVB-induced cutaneous tissue injury and inflammation compared with wild-type (WT) mice. This resistance was coupled with a faster epithelial tissue healing response. In contrast, the skins of UVB-irradiated invariant NKT cell-knockout (Jα18(-/-)) and NKT cell-deficient (TCRα(-/-)) mice, which express CD1d but are deficient in CD1d-dependent NKT cells, exhibited as much cutaneous tissue injury and inflammation as WT mice. In the absence of NKT cells, CD1d-deficient keratinocytes, dendritic cells, and macrophages exhibited diminished basal and stress-induced levels of pro-inflammatory mediators. Thus, our findings identify an essential role for CD1d in promoting UVB-induced cutaneous tissue injury and inflammation. They also suggest sunburn and NMSC etiologies are immunologically linked.
Resumo:
We previously demonstrated the synergistic therapeutic effect of the cetuximab (anti-epidermal growth factor receptor [EGFR] monoclonal antibody, mAb)-trastuzumab (anti-HER2 mAb) combination (2mAbs therapy) in HER2(low) human pancreatic carcinoma xenografts. Here, we compared the 2mAbs therapy, the erlotinib (EGFR tyrosine kinase inhibitor [TKI])-trastuzumab combination and lapatinib alone (dual HER2/EGFR TKI) and explored their possible mechanisms of action. The effects on tumor growth and animal survival of the three therapies were assessed in nude mice xenografted with the human pancreatic carcinoma cell lines Capan-1 and BxPC-3. After therapy, EGFR and HER2 expression and AKT phosphorylation in tumor cells were analyzed by Western blot analysis. EGFR/HER2 heterodimerization was quantified in BxPC-3 cells by time-resolved FRET. In K-ras-mutated Capan-1 xenografts, the 2mAbs therapy gave significantly higher inhibition of tumor growth than the erlotinib/trastuzumab combination, whereas in BxPC-3 (wild-type K-ras) xenografts, the erlotinib/trastuzumab combination showed similar growth inhibition but fewer tumor-free mice. Lapatinib showed no antitumor effect in both types of xenografts. The efficacy of the 2mAbs therapy was partly Fc-independent because F(ab')(2) fragments of the two mAbs significantly inhibited BxPC-3 growth, although with a time-limited therapeutic effect. The 2mAbs therapy was associated with a reduction of EGFR and HER2 expression and AKT phosphorylation. BxPC-3 cells preincubated with the two mAbs showed 50% less EGFR/HER2 heterodimers than controls. In pancreatic carcinoma xenografts, the 2mAbs therapy is more effective than treatments involving dual EGFR/HER2 TKIs. The mechanism of action may involve decreased AKT phosphorylation and/or disruption of EGFR/HER2 heterodimerization.
Resumo:
The purpose of this study was to evaluate the association of the T309G MDM2 gene polymorphism with renal cell carcinoma (RCC) risk, pathology, and cancer-specific survival (CSS). T309G MDM2 was genotyped in 449 Caucasians, including 240 with RCC and 209 cancer-free controls. The T309G MDM2 genotype was TT in 174 (38.8%), GT in 214 (47.7%), and GG in 61 (13.6%) subjects, without any significant differences between cases and controls on both univariable (p=0.58) and multivariable logistic regression (each p>0.25). Furthermore, T309G MDM2 was not linked with T stage (p=0.75), N stage (p=0.37), M stage (p=0.94), grade (p=0.21), and subtype (p=0.55). There was, however, a statistically significant association of T309G MDM2 with CSS (p=0.022): patients with TT had significantly worse survival than GG/GT (p=0.009), while those with GT and GG had similar outcomes (p=0.92). The 5-year survival rate for patients with TT, GT, and GG was 69.5%, 84.5%, and 89.7%, respectively. On the multivariable analysis, T309G was identified as an independent prognostic factor. The T309G MDM2 polymorphism is an independent prognostic factor for patients with RCC, with the TT genotype being associated with worse prognosis. In this study, there were no significant associations with RCC risk and pathology.
Water-filtered infrared-A radiation (wIRA) is not implicated in cellular degeneration of human skin.
Resumo:
BACKGROUND: Excessive exposure to solar ultraviolet radiation is involved in the complex biologic process of cutaneous aging. Wavelengths in the ultraviolet-A and -B range (UV-A and UV-B) have been shown to be responsible for the induction of proteases, e. g. the collagenase matrix metalloproteinase 1 (MMP-1), which are related to cell aging. As devices emitting longer wavelengths are widely used in therapeutic and cosmetic interventions and as the induction of MMP-1 by water-filtered infrared-A (wIRA) had been discussed, it was of interest to assess effects of wIRA on the cellular and molecular level known to be possibly involved in cutaneous degeneration. OBJECTIVES: Investigation of the biological implications of widely used water-filtered infrared-A (wIRA) radiators for clinical use on human skin fibroblasts assessed by MMP-1 gene expression (MMP-1 messenger ribonucleic acid (mRNA) expression).Methods: Human skin fibroblasts were irradiated with approximately 88% wIRA (780-1400 nm) and 12% red light (RL, 665-780 nm) with 380 mW/cm(2) wIRA(+RL) (333 mW/cm(2) wIRA) on the one hand and for comparison with UV-A (330-400 nm, mainly UV-A1) and a small amount of blue light (BL, 400-450 nm) with 28 mW/cm(2) UV-A(+BL) on the other hand. Survival curves were established by colony forming ability after single exposures between 15 minutes and 8 hours to wIRA(+RL) (340-10880 J/cm(2) wIRA(+RL), 300-9600 J/cm(2) wIRA) or 15-45 minutes to UV-A(+BL) (25-75 J/cm(2) UV-A(+BL)). Both conventional Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) and quantitative real-time RT-PCR techniques were used to determine the induction of MMP-1 mRNA at two physiologic temperatures for skin fibroblasts (30 degrees C and 37 degrees C) in single exposure regimens (15-60 minutes wIRA(+RL), 340-1360 J/cm(2) wIRA(+RL), 300-1200 J/cm(2) wIRA; 30 minutes UV-A(+BL), 50 J/cm(2) UV-A(+BL)) and in addition at 30 degrees C in a repeated exposure protocol (up to 10 times 15 minutes wIRA(+RL) with 340 J/cm(2) wIRA(+RL), 300 J/cm(2) wIRA at each time). RESULTS: Single exposure of cultured human dermal fibroblasts to UV-A(+BL) radiation yielded a very high increase in MMP-1 mRNA expression (11 +/-1 fold expression for RT-PCR and 76 +/-2 fold expression for real-time RT-PCR both at 30 degrees C, 75 +/-1 fold expression for real-time RT-PCR at 37 degrees C) and a dose-dependent decrease in cell survival. In contrast, wIRA(+RL) did not produce cell death and did not induce a systematic increase in MMP-1 mRNA expression (less than twofold expression, within the laboratory range of fluctuation) detectable with the sensitive methods applied. Additionally, repeated exposure of human skin fibroblasts to wIRA(+RL) did not induce MMP-1 mRNA expression systematically (less than twofold expression by up to 10 consecutive wIRA(+RL) exposures and analysis with real-time RT-PCR). CONCLUSIONS: wIRA(+RL) even at the investigated disproportionally high irradiances does not induce cell death or a systematic increase of MMP-1 mRNA expression, both of which can be easily induced by UV-A radiation. Furthermore, these results support previous findings of in vivo investigations on collagenase induction by UV-A but not wIRA and show that infrared-A with appropriate irradiances does not seem to be involved in MMP-1 mediated photoaging of the skin. As suggested by previously published studies wIRA could even be implicated in a protective manner.
Resumo:
Cancer pain significantly affects the quality of cancer patients, and current treatments for this pain are limited. C-Jun N-terminal kinase (JNK) has been implicated in tumor growth and neuropathic pain sensitization. We investigated the role of JNK in cancer pain and tumor growth in a skin cancer pain model. Injection of luciferase-transfected B16-Fluc melanoma cells into a hindpaw of mouse induced robust tumor growth, as indicated by increase in paw volume and fluorescence intensity. Pain hypersensitivity in this model developed rapidly (<5 days) and reached a peak in 2 weeks, and was characterized by mechanical allodynia and heat hyperalgesia. Tumor growth was associated with JNK activation in tumor mass, dorsal root ganglion (DRG), and spinal cord and a peripheral neuropathy, such as loss of nerve fibers in the hindpaw skin and induction of ATF-3 expression in DRG neurons. Repeated systemic injections of D-JNKI-1 (6 mg/kg, i.p.), a selective and cell-permeable peptide inhibitor of JNK, produced an accumulative inhibition of mechanical allodynia and heat hyperalgesia. A bolus spinal injection of D-JNKI-1 also inhibited mechanical allodynia. Further, JNK inhibition suppressed tumor growth in vivo and melanoma cell proliferation in vitro. In contrast, repeated injections of morphine (5 mg/kg), a commonly used analgesic for terminal cancer, produced analgesic tolerance after 1 day and did not inhibit tumor growth. Our data reveal a marked peripheral neuropathy in this skin cancer model and important roles of the JNK pathway in cancer pain development and tumor growth. JNK inhibitors such as D-JNKI-1 may be used to treat cancer pain.