349 resultados para Small Acinar Proliferation
Resumo:
Background. Predictive molecular marker analyses are standard of care in order to select non-small cell lung cancer (NSCLC) patients for targeted therapies. The aim of this study was to determine the prevalence of targetable oncogenic driver mutations including EGFR, KRAS, BRAF, HER2, ALK and ROS1 in Switzerland. Methods. Eight Swiss pathology institutions provided retrospective and anonymized data on their predictive molecular marker results performed on NSCLC from January 2012 to December 2014. Clinico-pathological data were recorded including age, gender, histological NSCLC-subtype and specimen type (biopsy, conventional cytology and cell block, respectively) used for molecular analyses. The prevalence of oncogenic mutations were calculated and compared between the centres. Results. A total of 4187 NSCLC were included into the study. The median age was 67 years and 55% were male patients. The tumor specimens for molecular analysis were mostly derived from biopsies (69%), 26% were from conventional cytology specimens and only in 5% from cell blocks. The most prevalent gene mutation was KRAS with 30.6% (range: 27.3-33.9%), followed by EGFR, BRAF and HER2 mutations in 12.2% (range: 10.2-13.1%), 3.9% (range: 2.5-5.6%) and 1.1% (range: 0.9-4.0%), respectively, without significant differences between the eight centers. Concomitant EGFR and KRAS mutations were detected in only 3/2027 NSCLC. In contrast the prevalence of ALK (mean 6.5%, range: 2.8-11.7%) and ROS1 (mean 2.4%, range: 1.5-6.2%) rearrangements varied significantly between centers. Conclusions. The Prevalence of EGFR, KRAS, BRAF and HER2 mutations are well in line with data from other West European populations. Concomitant EGFR, KRAS, BRAF or HER2 mutations are exceptional. ALK FISH results vary significantly between the eight centres. Concomitant ALK FISH positive results in NSCLC harbouring other oncogenic driver mutation have only been observed in two smaller centres, highlighting the difficulty in ALK-FISH interpretation.
Resumo:
Le cancer du poumon est la première cause de mortalité associée au cancer dans le monde. Le traitement curatif des tumeurs pulmonaires non-à-petites-cellules (NSCLC) diagnostiquées à un stade précoce se base sur une approche chirurgicale. Cependant, étant donné les comorbidités liées à la consommation de tabac, dont la bronchopneumopathie chronique occupe la première place, l'éligibilité chirurgicale pour ce type de cancer se trouve fréquemment limitée. Dans ce contexte, l'emploi de la radiothérapie stéréotaxique (SBRT) est une alternative valable chez les patients atteints d'un NSCLC primaire de stade précoce, et qui sont considérés inopérables à cause de leurs comorbidités. Depuis peu seulemement, le spectre de la SBRT a été élargi aux patients atteints d'un deuxième NSCLC primaire (SPLC), faisant suite à un premier NSCLC, traité avec un but curatif. Ils concernent donc des patients ayant déjà subits une intervention chirurgicale au préalable et qui présentent une réserve fonctionnelle pulmonaire extrêmement réduite. Le succès croissant de la SBRT résulte soit d'une efficacité thérapeutique comparables à la chirurgie, soit de sa toxicité qui semble limitée. À notre connaissance, seulement une étude a reporté des issues cliniques de patients affectés par des NSCLC primaires traités par SBRT. Cette dernière a utilisé la tomothérapie comme système d'irradiation (T-SBRT), sur un faible échantillon de patients (n = 27). Concernant l'irradiation des patients présentant des SPLC, la littérature disponible est pauvre et aucune publication a décrit l'utilisation de la T-SBRT. Ces éléments innovants ont donc motivé la rédaction d'un travail de thèse concernant les premières données cliniques de l'expérience faite au CHUV. Du point de vue des effets secondaires, si la pneumonie actinique précoce et tardive survenant au niveau du champ d'irradiation est désormais une complication iatrogène bien connue de la SBRT, une seule étude s'est intéressée à ce sujet dans le cadre de la T-SBRT. De plus, une entité bénigne et transitoire de pneumonie ( ?) a été reconnue depuis peu : la pneumonie organisée radio-induite (OP). Celle-ci semble se chevaucher comme un autre effet iatrogène à l'extérieur du champ d'irradiation. Originellement, cette dernière avait été rapportée dans les suites de la radiothérapie pour les cancer du sein. Elle a été décrite comme étant initialement limitée au champ d'irradiation et successivement pouvant s'étendre dynamiquement en dehors de celui-ci. Nous avons donc supposé que des infiltrats de OP peuvent être présents chez des patients asymptomatiques, et que ce dynamisme pourrait être identifié déjà au sein du champ d'irradiation. Notre étude a démontré que le traitement par T-SBRT garde des issues cliniques très encourageantes, aussi bien pour les tumeurs primaires que pour les SPLC. Entre autre, ce traitement semble avoir une toxicité limitée, et l'existence vraisemblable de la OP, déjà au sein du champ d'irradiation, peut aider les radiologues à différencier les infiltrats radio-induits d'une une récidive tumorale.
Resumo:
There is renewed interest in the immune regulatory role of the spleen in oncology. To date, very few studies have examined macroscopic variations of splenic volume in the setting of cancer, prior to or during therapy, especially in humans. Changes in splenic volume may be associated with changes in splenic function. The purpose of this study was to investigate variations in spleen volume in NSCLC patients during chemo-radiotherapy. Sixty patients with stage I-IIIB NSCLC underwent radiotherapy (60Gy/30 fractions) for six weeks with concomitant carboplatin/paclitaxel (Ca/P; n = 32) or cisplatin/etoposide (Ci/E; n = 28). A baseline PET/CT scan was performed within 2 weeks prior to treatment and during Weeks 2 and 4 of chemo-radiotherapy. Spleen volume was measured by contouring all CT slices. Significant macroscopic changes in splenic volume occurred early after the commencement of treatment. A significant decrease in spleen volume was observed for 66% of Ca/P and 79% of Ci/E patients between baseline and Week 2. Spleen volume was decreased by 14.2% for Ca/P (p<0.001) and 19.3% for Ci/E (p<0.001) patients. By Week 4, spleen volume was still significantly decreased for Ca/P patients compared to baseline, while for Ci/E patients, spleen volume returned to above baseline levels. This is the first report demonstrating macroscopic changes in the spleen in NSCLC patients undergoing radical chemo-radiotherapy that can be visualized by non-invasive imaging.
Resumo:
BACKGROUND & AIMS: Knockout studies of the murine Nuclear Factor I-C (NFI-C) transcription factor revealed abnormal skin wound healing and growth of its appendages, suggesting a role in controlling cell proliferation in adult regenerative processes. Liver regeneration following partial hepatectomy (PH) is a well-established regenerative model whereby changes elicited in hepatocytes lead to their rapid and phased proliferation. Although NFI-C is highly expressed in the liver, no hepatic function was yet established for this transcription factor. This study aimed to determine whether NFI-C may play a role in hepatocyte proliferation and liver regeneration. METHODS: Liver regeneration and cell proliferation pathways following two-thirds PH were investigated in NFI-C knockout (ko) and wild-type (wt) mice. RESULTS: We show that the absence of NFI-C impaired hepatocyte proliferation because of plasminogen activator I (PAI-1) overexpression and the subsequent suppression of urokinase plasminogen activator (uPA) activity and hepatocyte growth factor (HGF) signalling, a potent hepatocyte mitogen. This indicated that NFI-C first acts to promote hepatocyte proliferation at the onset of liver regeneration in wt mice. The subsequent transient down regulation of NFI-C, as can be explained by a self-regulatory feedback loop with transforming growth factor beta 1 (TGF-ß1), may limit the number of hepatocytes entering the first wave of cell division and/or prevent late initiations of mitosis. CONCLUSION: NFI-C acts as a regulator of the phased hepatocyte proliferation during liver regeneration.
Resumo:
To determine the feasibility of data transfer, an interlaboratory comparison was conducted on colon carcinoma cell line (DLD-1) proteins resolved by two-dimensional polyacrylamide gel electrophoresis either on small (6 x 7 cm) or large (16x18 cm) gels. The gels were silver-stained and scanned by laser densitometry, and the image obtained was analyzed using Melanie software. The number of spots detected was 1337+/-161 vs. 2382+/-176 for small vs. large format gels, respectively. After gel calibration using landmarks determined using pl and Mr markers, large- and small-format gels were matched and 712+/-36 proteins were found on both types of gels. Having performed accurate gel matching it was possible to acquire additional information after accessing a 2-D PAGE reference database (http://www.expasy.ch/ cgibin/map2/def?DLD1_HUMAN). Thus, the difference in gel size is not an obstacle for data transfer. This will facilitate exchanges between laboratories or consultation concerning existing databases.
Resumo:
Hypertrophic osteoarthrpathy (HO) is a rare paraneoplasic syndrome associated with non-small cell lung cancer (NSCLC). The pathophysiology of HO is unknown but was recently related to enhanced levels of urine prostaglandin E2 (PGE2). Here, we report the case of a patient that presented HO in association with a resectable left upper lobe NSCLC. Following surgery and adjuvant chemotherapy, HO resolved and did not recur with development of a brain metastasis 1 year later. Interestingly, tumor cyclooxygenase-2, an enzyme responsible the synthesis of PGE2, was expressed in the primary tumor but not in the resected metastasis.
Resumo:
Insulin secretion from pancreatic β cells plays a central role in the control of blood glucose levels. The amount of insulin released by β cells is precisely adjusted to match organism requirements. A number of conditions that arise during life, including pregnancy and obesity, can result in a decreased sensitivity of insulin target tissues and a consequent rise in insulin needs. To preserve glucose homoeostasis, the augmented insulin demand requires a compensatory expansion of the pancreatic β cell mass and an increase in its secretory activity. This compensatory process is accompanied by modifications in β cell gene expression, although the molecular mechanisms underlying the phenomenon are still poorly understood. Emerging evidence indicates that at least part of these compensatory events may be orchestrated by changes in the level of a novel class of gene regulators, the microRNAs. Indeed, several of these small, non-coding RNAs have either positive or negative impacts on β cell proliferation and survival. The studies reviewed here suggest that the balance between the actions of these two groups of microRNAs, which have opposing functional effects, can determine whether β cells expand sufficiently to maintain blood glucose levels in the normal range or fail to meet insulin demand and thus lead, as a consequence, towards diabetes manifestation. A better understanding of the mechanisms governing changes in the microRNA profile will open the way for the development of new strategies to prevent and/or treat both type 2 and gestational diabetes.
Resumo:
Aim: Bevacizumab is a monoclonal antibody directed against the vascular endothelial growth factor (VEGF). The previous phase II trial ABIGAIL (Reck, 2010) suggested circulating VEGF as a prognostic, but not predictive, biomarker for patients (pts) with non-small cell lung cancer (NSCLC) treated with bevacizumab. We prospectively measured VEGF in the multicenter phase II trial SAKK19/09 (NCT01116219). Methods: SAKK19/09 enrolled 77 evaluable patients (pts) with previously untreated, advanced nonsquamous NSCLC and EGFR wild type. Pts received 4 cycles of cisplatin 75mg/m2 (or carboplatin AUC5), pemetrexed 500mg/m2 and bevacizumab 7.5mg/kg, followed by maintenance therapy with pemetrexed and bevacizumab until progression by RECIST1.1. Follow-up CT scans were performed every 6 weeks until week 54 and every 12 weeks thereafter. Baseline EDTA blood samples were sent by same-day courier to the central laboratory for centrifugation, aliquoting, and freezing. Upon completion of enrollment, aliquots were thawed, and VEGF quantification was performed centrally using Luminex® Performance Assay Human Base Kit A (R&D Systems, Abingdon, UK). The mean value was used to stratify pts into two groups (low versus high VEGF). Best response rate assessed by RECIST1.1 (CR + PR versus SD + PD). Results: Clinical results of the SAKK19/09 trial were reported previously (Gautschi, 2013). Baseline plasma VEGF was detectable in 71 of 77 (92%) evaluable patients treated with chemotherapy and bevacizumab. The mean value was 74.9 pg/ml, the median 47.5 pg/ml, and the range 3.55 to 310 pg/ml. Using the mean as a predefined cutoff value, 50 patients had low VEGF levels and 21 patients had high VEGF levels. High VEGF was significantly associated with shorter PFS (4.1 vs 8.3 months, HR = 2.56; 95%CI: 1.43- 4.57; p = 0.0015) and OS (8.7 vs 17.5 months, HR = 2.67; 95% CI: 1.37-5.20; p = 0.0041), but not with best response rate ( p = 0.2256). Conclusions: Consistent with the ABIGAIL trial, circulating VEGF was prognostic, but not predictive for response, in the current trial. Further work is ongoing to identify potentially predictive biomarkers for bevacizumab, using comprehensive proteomic analyses. Disclosure: S.I. Rothschild: I received honoraria for the participation in advisory boards from Eli Lilly and Roche and for presentations at scientific symposiums sponsored by Roche; O. Gautschi: Honoraria for advisory boards of Eli Lilly and Roche; R. Cathomas: Advisory board member: Eli Lilly. All other authors have declared no conflicts of interest.
Resumo:
Aim The reported prevalence of MET overexpression varies from 25-55% in non-small cell lung cancer (NSCLC) and clinical correlations are emerging slowly. In a well-defined NSCLC cohort of the Lungscape program, we explore the epidemiology, the natural history of IHC MET positivity and its association to OS, RFS and TTR. Methods Resected stage I-III NSCLC identified based on the quality of clinical data and FFPE tissue availability were assessed for MET expression using immunohistochemistry (IHC) on TMAs (CONFIRM anti total c-MET assay, clone SP44, Ventana BenchMark platform). All cases were analysed at participating pathology laboratories using the same protocol, after passing an external quality assurance program. MET positive status is defined as ≥ 50% of tumor cells staining with 2+ or 3+ intensity. Results A total of 2709 cases are included in the iBiobank and will be analysed. IHC MET expression is currently available for 1552 patients, with positive MET IHC staining in 380 cases [24.5%; IHC 3+ in 157 cases (41.3%) and 2+ in 223 cases (58.7%)]. The cohort of 1552 patients includes 48.2%, 44.7% and 4.4% cases of adenocarcinoma, squamous and large cell histologies, respectively. IHC MET status was independent of stage, age and smoking history. Significant differences in MET positivity were associated with gender (32% vs. 21% for female vs. male, p < 0.001), with performance status (25% vs. 18% for 0 vs. 1-3, p = 0.006), and histology (34%, 14% and 24% for adenocarcinoma, squamous and large cell carcinoma, p < 0.001). IHC MET positivity was independent of the IHC ALK status (p = 0.08). At last FU, 52% of patients were still alive, with a median FU of 4.8 yrs. No association of IHC MET was found with OS, RFS or TTR. Conclusions The preliminary results for this large multicentre European cohort describe a prevalence of MET overexpression that seems lower than previous observations in NSCLC, such as reported for the OAM4971g trial, suggesting potential biological differences between surgically resected and metastatic disease. Analysis for the full cohort is ongoing and results will be presented. Disclosure L. Bubendorf: Disclosures: Stock ownership: Roche Advisory boards: Roche, Pfizer Research support: Roche; K. Schulze: Full time employee of Roche; A. Das-Gupta: I am a full time employee of Roche. All other authors have declared no conflicts of interest.
Resumo:
Aim: One standard option in the treatment of stage IIIA/N2 NSCLC is neoadjuvant chemotherapy followed by surgery. We investigated in a randomized trial whether the addition of neoadjuvant radiotherapy would improve the outcome. Here we present the final results of this study. Methods: Patients (pts.) with pathologically proven, resectable stage IIIA/N2 NSCLC, performance status 0-1, and adequate organ function were randomized 1:1 to chemoradiation (CRT) with 3 cycles of neoadjuvant chemotherapy (cisplatin 100 mg/m2 and docetaxel 85 mg/m2 d1, q3weeks) followed by accelerated concomitant boost radiotherapy (RT) with 44 Gy in 22 fractions in 3 weeks, or neoadjuvant chemotherapy alone (CT), with subsequent surgery for all pts. The primary endpoint was event-free survival (EFS). Results: 232 pts. were randomized in 23 centers, the median follow-up was 53 months. Two thirds were men, median age was 60 years (range 37-76). Histology was squamous cell in 33%, adenocarcinoma in 43%. Response rate to CRT was 61% vs. 44% with CT. 85% of all pts. underwent surgery, 30-day postoperative mortality was 1%. The rate of complete resection was 91% (CRT) vs. 81% (CT) and the pathological complete remission (pCR) rate was 16% vs. 12%. The median EFS was 13.1 months (95% CI 9.9 - 23.5) for the CRT group vs. 11.8 months (95% CI 8.4 - 15.2) in the CT arm (p 0.665). The median overall survival (OS) with CRT was 37.1 months (95% CI 22.6 -50), with CT 26.1 months ( 95% CI 26.1 - 52.1, p 0.938). The local failure rate was 23% in both arms. In the CT arm 12 pts. were given postoperative radiotherapy (PORT) for R1 resection, 6 pts. received PORT in violation of the protocol. Pts. with a pCR, mediastinal downstaging to ypN0/1 and complete resection had a better outcome. Toxicity of chemotherapy was substantial, especially febrile neutropenia was common, whereas RT was well tolerated. Conclusions: This is the first completed phase III trial to evaluate the role of induction chemoradiotherapy and surgery, in comparison to neoadjuvant CT alone followed by surgery. RT was active, it increased response, complete resection and pCR rates. However, this failed to translate into an improvement of local control, EFS or OS. Notably, surgery after induction treatment was safe, including pneumonectomy. The overall survival rates of our neoadjuvant regimen are very encouraging, especially for a multicenter setting. Disclosure: M. Pless: Advisory Board for Sanofi; R. Cathomas: Advisory Board Sanofi D.C. Betticher: Advisory Board Sanofi. All other authors have declared no conflicts of interest.
Resumo:
Background: Treatment of NSCLC has been revolutionized in recent years with the introduction of several targeted therapies for selected genetically altered subtypes of NSCLC. A better understanding of molecular characteristics of NSCLC, which features common drug targets, may identify new therapeutic options. Methods: Over 6,700 non-small cell lung cancer cases referred to Caris Life Sciences between 2009 and 2014. Diagnoses and history were collected from referring physicians. Specific testing was performed per physician request and included a combination of sequencing (Sanger, NGS or pyrosequencing), protein expression (IHC), gene amplification/rearrangement (CISH or FISH), and/or RNA fragment analysis. Results: Tumors profiles from patients with hormone receptor positive disease (HER2, ER, PR, or AR positive by IHC) (n=629), HER2 mutations (n=8) ALK rearrangements (n=55), ROS1 rearrangement (n=17), cMET amplification or mutation (n=126), and cKIT mutation (n=11) were included in this analysis and compared to the whole cohort. Tumors with ALK rearrangement overexpressed AR in 18% of cases, and 7% presented with concomitant KRAS mutation. Lower rates of PTEN loss, as assessed by IHC, were observed in ALK positive (20%), ROS1 positive (9%) and cKIT mutated tumors (25%) compared to the overall NSCLC population (58%). cMET was overexpressed in 66% of ROS1 translocated and 57% of HER2 mutated tumors. cKIT mutations were found co-existing with APC (20%) and EGFR (20%) mutations. Pathway analysis revealed that hormone receptor positive disease carried more mutations in the ERK pathway (32%) compared to 9% in the mTOR pathway. 25% of patients with HER2 mutations harbored a co-existing mutation in the mTOR pathway. Conclusions: Pathway profiling reveals that NSCLC tumors present more often than reported with several concomitant alterations affecting the ERK or AKT pathway. Additionally, they are also characterized by the expression of potential biological modifiers of the cell cycle like hormonal receptors, representing a rationale for dual inhibition strategies in selected patients. Further refining of the understanding of NSCLC biomarker profile will optimize research for new treatment strategies.
Resumo:
Renal biopsy is being increasingly proposed as a diagnostic tool to characterize small renal masses (SRM). Indeed, the wide adoption of imaging in the diagnostic workup of many diseases had led to a substantial increased incidence of SRM (diameter ≤4 cm). While modern ultrasound, computed tomography (CT) and magnetic resonance imaging (MRI) techniques have high sensitivity for detecting SRM, none is able to accurately and reliably characterize them in terms of histological features. This is currently of key importance in guiding clinical decision-making in some situations, and in these cases renal biopsy should be considered. In this review, we aim to summarize the technique, diagnostic performance, and predicting factors of nondiagnostic biopsy, as well as the future perspectives.
Resumo:
Thermal processes are widely used in small molecule chemical analysis and metabolomics for derivatization, vaporization, chromatography, and ionization, especially in gas chromatography mass spectrometry (GC/MS). In this study the effect of heating was examined on a set of 64 small molecule standards and, separately, on human plasma metabolite extracts. The samples, either derivatized or underivatized, were heated at three different temperatures (60, 100, and 250 °C) at different exposure times (30 s, 60 s, and 300 s). All the samples were analyzed by liquid chromatography coupled to electrospray ionization mass spectrometry (LC/MS) and the data processed by XCMS Online ( xcmsonline.scripps.edu ). The results showed that heating at an elevated temperature of 100 °C had an appreciable effect on both the underivatized and derivatized molecules, and heating at 250 °C created substantial changes in the profile. For example, over 40% of the molecular peaks were altered in the plasma metabolite analysis after heating (250 °C, 300s) with a significant formation of degradation and transformation products. The analysis of 64 small molecule standards validated the temperature-induced changes observed on the plasma metabolites, where most of the small molecules degraded at elevated temperatures even after minimal exposure times (30 s). For example, tri- and diorganophosphates (e.g., adenosine triphosphate and adenosine diphosphate) were readily degraded into a mono-organophosphate (e.g., adenosine monophosphate) during heating. Nucleosides and nucleotides (e.g., inosine and inosine monophosphate) were also found to be transformed into purine derivatives (e.g., hypoxanthine). A newly formed transformation product, oleoyl ethyl amide, was identified in both the underivatized and derivatized forms of the plasma extracts and small molecule standard mixture, and was likely generated from oleic acid. Overall these analyses show that small molecules and metabolites undergo significant time-sensitive alterations when exposed to elevated temperatures, especially those conditions that mimic sample preparation and analysis in GC/MS experiments.
Resumo:
The vulnerability to infection of newborns is associated with a limited ability to mount efficient immune responses. High concentrations of adenosine and prostaglandins in the fetal and neonatal circulation hamper the antimicrobial responses of newborn immune cells. However, the existence of mechanisms counterbalancing neonatal immunosuppression has not been investigated. Remarkably, circulating levels of macrophage migration inhibitory factor (MIF), a proinflammatory immunoregulatory cytokine expressed constitutively, were 10-fold higher in newborns than in children and adults. Newborn monocytes expressed high levels of MIF and released MIF upon stimulation with Escherichia coli and group B Streptococcus, the leading pathogens of early-onset neonatal sepsis. Inhibition of MIF activity or MIF expression reduced microbial product-induced phosphorylation of p38 and ERK1/2 mitogen-activated protein kinases and secretion of cytokines. Recombinant MIF used at newborn, but not adult, concentrations counterregulated adenosine and prostaglandin E2-mediated inhibition of ERK1/2 activation and TNF production in newborn monocytes exposed to E. coli. In agreement with the concept that once infection is established high levels of MIF are detrimental to the host, treatment with a small molecule inhibitor of MIF reduced systemic inflammatory response, bacterial proliferation, and mortality of septic newborn mice. Altogether, these data provide a mechanistic explanation for how newborns may cope with an immunosuppressive environment to maintain a certain threshold of innate defenses. However, the same defense mechanisms may be at the expense of the host in conditions of severe infection, suggesting that MIF could represent a potential attractive target for immune-modulating adjunctive therapies for neonatal sepsis.
Resumo:
RGD peptide sequences are known to regulate cellular activities by interacting with α5β1, αvβ5 and αvβ3 integrin, which contributes to the wound healing process. In this study, RGDC peptide was immobilized onto chitosan derivative 1,6-diaminohexane-O-carboxymethyl-N,N,N-trimethyl chitosan (DAH-CMTMC) to display RGDC-promoting adhesion for enhanced wound healing. The efficiency of N-methylation, O-carboxymethylation and spacer grafting was quantitatively and qualitatively analyzed by (1)H NMR and FTIR, yielding 0.38 degree of substitution for N-methylation and >0.85 for O-carboxymethylation. The glass transition temperatures for chitosan derivatives were also studied. Peptide immobilization was achieved through sulfhydryl groups using sulfosuccinimidyl (4-iodoacetyl)amino-benzoate (sulfo-SIAB method). RGDC immobilized peptide onto DAH-CMTMC was found to be about 15.3μg/mg of chitosan derivative by amino acid analysis (AAA). The significant increase of human dermal fibroblast (HDF) viability in vitro over 7 days suggests that RGDC-functionalized chitosan may lead to enhanced wound healing (viability >140%). Moreover, bio-adhesion and proliferation assays confirmed that coatings of RGDC-functionalized chitosan derivatives exhibit in vitro wound healing properties by enhancing fibroblast proliferation and adhesion. These results showed that RGDC peptide-functionalized chitosan provides an optimal environment for fibroblast adhesion and proliferation.