342 resultados para RENAL PROXIMAL TUBULES
Resumo:
Glutaric aciduria type-I (GA-I) and methylmalonic aciduria (MMA-uria) are two neurometabolic diseases manifesting in neonatal period and early childhood. They belong to the group of organic acidurias and are caused by defects in the catabolism of amino acids, leading to massive accumulation of toxic metabolites in the body and severe brain injury. Therapeutic strategies are mainly based on reversing catabolic state during metabolic crisis and dietary protein restriction that both aim to prevent extra production of toxic metabolites. Specific and neuroprotective treatments are missing because the mechanisms of brain damage in these diseases are only poorly understood. The principal objective of my work was to develop in vitro models for both diseases aiming at elucidation of toxic effects of the main metabolites accumulating in GA-I (glutaric acid (GA) and 3-hydroxy glutaric acid (3-OHGA)) and MMA-uria (methylmalonic acid (MMA), propionic acid (PA) and 2-methylcitric acid (2-MCA)) on developing brain cells, and to study the cellular pathways targeted by these deleterious effects in order to find new therapeutic potentials. We used re-aggregated embryonic rat brain cells in organotypic 3D cultures, which were exposed to toxic metabolites at different developing stages of the cultures. In parallel, we studied the cellular localization of the defected enzyme in GA-I, glutaryl-CoA dehydrogenase (GCDH), in the brain and peripheral tissues of rats in adulthood and during embryonic development. GCDH expression: GCDH showed a strong neuronal expression in embryonic central and peripheral nervous system. In the adult brain, GCDH expression was exclusively neuronal with the strongest signal in cerebral cortex and Purkinje cells. GCDH expression was homogenous in embryonic peripheral organs with high levels in intestinal mucosa at late stages. Strong GCDH expression was also observed in liver and intestinal mucosa and with lower intensity in muscles, convoluted renal tubules and renal collecting tubes in adult peripheral organs. GA-I and MMA-uria in vitro models: 3-OHGA (for GA-I) and 2-MCA (for MMA-uria) showed the most deleterious effects at early stages of the cultures with morphological and biochemical alterations and induction of cell death. 3-OHGA and 2-MCA caused astrocytic cell suffering reflected by astrocytic fiber loss and swelling and retardation in oligodendrocytic maturation and/or differentiation. High ammonium increase concomitant with glutamine decrease was observed in these cultures. Neurons were not substantially affected. Our studies revealed that brain-cell generated ammonia may play a role in the neuropathogenesis of these diseases. Thus, developing neuroprotective strategies that target ammonium toxicity in the brain of GA-I and MMA-uria patients might be important according to our findings. -- L'acidurie glutarique de type I (GA-I) et l'acidurie méthylmalonique (MMA-urie) sont deux maladies neurométaboliques se manifestant durant la période néonatale ou la petite enfance, et qui appartiennent aux aciduries organiques. Elles sont causées par des défauts dans le catabolisme des acides aminés, conduisant à une accumulation des métabolites toxiques dans le corps et aussi des lésions cérébrales sévères. Le traitement est limité à une prise en charge d'urgence pendant la crise métabolique et à une diète restreinte en protéines naturelles. Des traitements spécifiques, neuroprotecteurs manquent principalement parce que les mécanismes conduisant aux lésions cérébrales dans ces maladies sont peu connus. L'objectif principal de mon travail était d'élucider les effets toxiques des métabolites accumulés dans GA-I (l'acide glutarique (GA) et l'acide 3-hydroxyglutarique (3-OHGA)) et MMA-uria (l'acide méthylmalonique (MMA), l'acide propionique (PA) et l'acide 2-méthylcitrique(2-MCA) sur les cellules du cerveau ainsi que les voies cellulaires impliquées, dans le but de trouver de potentielles nouvelles stratégies thérapeutiques. Nous avons utilisé un modèle in vitro de cultures 3D de cellules de cerveau d'embryons de rat (en développement) en les exposant aux métabolites toxiques à différents stades de développement des cultures. En parallèle, nous avons étudié la localisation cellulaire de l'enzyme déficiente dans GA-I, la CoA-glutarly déshydrogénase (GCDH), dans le cerveau et les organes périphériques des rats adultes et pendant le développement embryonnaire. L'expression de GCDH: GCDH a montré une expression neuronale forte dans le système nerveux chez l'embryon et le cerveau adulte. L'expression était homogène dans les organes périphériques avec une forte expression dans l'intestin. Les modèles in vitro de GA-I et MMA-uria : 3-OHGA en modèle GA-I et 2-MCA en modèle MMA-uria ont montré les effets délétères les plus importants avec des altérations morphologiques des cellules et biochimiques dans le milieu de culture et l'induction de mort cellulaire non-apoptotique (3-OHGA) ou apoptotique (2-MCA). 3-OHGA et 2-MCA ont provoqué une souffrance astrocytaire avec perte des fibres et gonflement et un retard de maturation et/ou de différentiation des oligodendrocytes. Une augmentation importante d'ammonium avec une diminution concomitante de glutamine a été observée dans les cultures. Les neurones n'étaient pas vraiment affectés. Nos études ont révélé que l'ammonium généré par les cellules cérébrales pourrait jouer un rôle dans la neuropathogenèse de ces deux maladies. Par conséquent, développer des stratégies neuroprotectrices ciblant la toxicité de l'ammonium dans le cerveau des patients atteints de GA-I ou MMA-urie pourrait être très important selon nos résultats.
Resumo:
We empirically contribute to the debate on business education in building on a decision frame perspective of decision making in corporate responsibility settings. Business schools have been accused to teach amoral theories, leading their students to behave less morally and engendering corporate responsibility scandals. Research has also pointed toward self-selection: business students would differ from non-business students before entering business school. We examine the role of socioeconomic status, core self-evaluations in this regard. Further, we investigate the belief in a free market as a distal influence triggering a business frame, and moral intensity as a proximal influence triggering a moral frame on responsible decision making by business and non-business students. Cross-sectional data obtained from 566 students on two decision making scenarios mostly supported our hypotheses. Socioeconomic status but not core self-evaluations explain the belief in a free market, and had indirect effects on the likelihood to make a less responsible decision. Importantly, the relationship between business studies and the belief in a free market remained significant after accounting for these variables. Our study thus contributes to the socialization and self-selection arguments. We discuss theoretical and practical implications for research on decision frames and for business education, respectively.
Resumo:
BACKGROUND: Primary hyperoxaluria type 3 (PH3) is characterized by mutations in the 4-hydroxy-2-oxoglutarate aldolase (HOGA1) gene. PH3 patients are believed to present with a less severe phenotype than those with PH1 and PH2, but the clinical characteristics of PH3 patients have yet to be defined in sufficient detail. The aim of this study was to report our experience with PH3. METHODS: Genetic analysis of HOGA1 was performed in patients with a high clinical suspicion of PH after the presence of mutations in the alanine-glyoxylate aminotransferase gene had been ruled out. Clinical, biochemical and genetic data of the seven patients identified with HOGA1 mutations were subsequently retrospectively reviewed. RESULTS: Among the seven patients identified with HOGA1 mutations the median onset of clinical symptoms was 1.8 (range 0.4-9.8) years. Five patients initially presented with urolithiasis, and two other patients presented with urinary tract infection. All patients experienced persistent hyperoxaluria. Seven mutations were found in HOGA1, including two previously unreported ones, c.834 + 1G > T and c.3G > A. At last follow-up, two patients had impaired renal function based on estimated glomerular filtration rates (GFRs) of 77 and 83 mL/min per 1.73 m(2), respectively. CONCLUSIONS: We found that the GFR was significantly impaired in two of our seven patients with PH3 diagnosed during childhood. This finding is in contrast to the early-impaired renal function in PH1 and PH2 and appears to refute to preliminary reassuring data on renal function in PH3.
Resumo:
Proteinuria and hyperphosphatemia are cardiovascular risk factors independent of GFR. We hypothesized that proteinuria induces relative phosphate retention via increased proximal tubule phosphate reabsorption. To test the clinical relevance of this hypothesis, we studied phosphate handling in nephrotic children and patients with CKD. Plasma fibroblast growth factor 23 (FGF-23) concentration, plasma phosphate concentration, and tubular reabsorption of phosphate increased during the proteinuric phase compared with the remission phase in nephrotic children. Cross-sectional analysis of a cohort of 1738 patients with CKD showed that albuminuria≥300 mg/24 hours is predictive of higher phosphate levels, independent of GFR and other confounding factors. Albuminuric patients also displayed higher plasma FGF-23 and parathyroid hormone levels. To understand the molecular mechanisms underlying these observations, we induced glomerular proteinuria in two animal models. Rats with puromycin-aminonucleoside-induced nephrotic proteinuria displayed higher renal protein expression of the sodium-phosphate co-transporter NaPi-IIa, lower renal Klotho protein expression, and decreased phosphorylation of FGF receptor substrate 2α, a major FGF-23 receptor substrate. These findings were confirmed in transgenic mice that develop nephrotic-range proteinuria resulting from podocyte depletion. In vitro, albumin did not directly alter phosphate uptake in cultured proximal tubule OK cells. In conclusion, we show that proteinuria increases plasma phosphate concentration independent of GFR. This effect relies on increased proximal tubule NaPi-IIa expression secondary to decreased FGF-23 biologic activity. Proteinuria induces elevation of both plasma phosphate and FGF-23 concentrations, potentially contributing to cardiovascular disease.
Resumo:
Notch is a membrane inserted protein activated by the membrane-inserted γ-secretase proteolytic complex. The Notch pathway is a potential therapeutic target for the treatment of renal diseases but also controls the function of other cells, requiring cell-targeting of Notch antagonists. Toward selective targeting, we have developed the γ-secretase inhibitor-based prodrugs 13a and 15a as substrates for γ-glutamyltranspeptidase (γ-GT) and/or γ-glutamylcyclotransferase (γ-GCT) as well as aminopeptidase A (APA), which are overexpressed in renal diseases, and have evaluated them in experimental in vitro and in vivo models. In nondiseased mice, the cleavage product from Ac-γ-Glu-γ-secretase inhibitor prodrug 13a (γ-GT-targeting and γ-GCT-targeting) but not from Ac-α-Glu-γ-secretase inhibitor prodrug 15a (APA-targeting) accumulated in kidneys when compared to blood and liver. Potential nephroprotective effects of the γ-secretase inhibitor targeted prodrugs were investigated in vivo in a mouse model of acute kidney injury, demonstrating that the expression of Notch1 and cleaved Notch1 could be selectively down-regulated upon treatment with the Ac-γ-Glu-γ-secretase-inhibitor 13a.
Resumo:
PURPOSE: Pretreatment measurements of systemic inflammatory response, including the Glasgow prognostic score (GPS), the neutrophil-to-lymphocyte ratio (NLR), the monocyte-to-lymphocyte ratio (MLR), the platelet-to-lymphocyte ratio (PLR) and the prognostic nutritional index (PNI) have been recognized as prognostic factors in clear cell renal cell carcinoma (CCRCC), but there is at present no study that compared these markers. METHODS: We evaluated the pretreatment GPS, NLR, MLR, PLR and PNI in 430 patients, who underwent surgery for clinically localized CCRCC (pT1-3N0M0). Associations with disease-free survival were assessed with Cox models. Discrimination was measured with the C-index, and a decision curve analysis was used to evaluate the clinical net benefit. RESULTS: On multivariable analyses, all measures of systemic inflammatory response were significant prognostic factors. The increase in discrimination compared with the stage, size, grade and necrosis (SSIGN) score alone was 5.8 % for the GPS, 1.1-1.4 % for the NLR, 2.9-3.4 % for the MLR, 2.0-3.3 % for the PLR and 1.4-3.0 % for the PNI. On the simultaneous multivariable analysis of all candidate measures, the final multivariable model contained the SSIGN score (HR 1.40, P < 0.001), the GPS (HR 2.32, P < 0.001) and the MLR (HR 5.78, P = 0.003) as significant variables. Adding both the GPS and the MLR increased the discrimination of the SSIGN score by 6.2 % and improved the clinical net benefit. CONCLUSIONS: In patients with clinically localized CCRCC, the GPS and the MLR appear to be the most relevant prognostic measures of systemic inflammatory response. They may be used as an adjunct for patient counseling, tailoring management and clinical trial design.
Resumo:
Renal denervation can reduce blood pressure in patients with uncontrolled hypertension. The adherence to prescribed antihypertensive medication following renal denervation is unknown. This study investigated adherence to prescribed antihypertensive treatment by liquid chromatography-high resolution tandem mass spectrometry in plasma and urine at baseline and 6 months after renal denervation in 100 patients with resistant hypertension, defined as baseline office systolic blood pressure ≥140 mmHg despite treatment with ≥3 antihypertensive agents. At baseline, complete adherence to all prescribed antihypertensive agents was observed in 52 patients, 46 patients were partially adherent, and two patients were completely non-adherent. Baseline office blood pressure was 167/88 ± 19/16 mmHg with a corresponding 24-h blood pressure of 154/86 ± 15/13 mmHg. Renal denervation significantly reduced office and ambulatory blood pressure at 6-month follow-up by 15/5 mmHg (p < 0.001/p < 0.001) and 8/4 mmHg (p < 0.001/p = 0.001), respectively. Mean adherence to prescribed treatment was significantly reduced from 85.0 % at baseline to 80.7 %, 6 months after renal denervation (p = 0.005). The blood pressure decrease was not explained by improvements in adherence following the procedure. Patients not responding to treatment significantly reduced their drug intake following the procedure. Adherence was highest for angiotensin-converting enzyme inhibitors/angiotensin receptor blockers and beta blockers (>90 %) and lowest for vasodilators (21 %). In conclusion, renal denervation can reduce office and ambulatory blood pressure in patients with resistant hypertension despite a significant reduction in adherence to antihypertensive treatment after 6 months.
Resumo:
BACKGROUND/AIMS: The purpose of the present study was to compare the direct renin inhibitor aliskiren to the diuretic hydrochlorothiazide (HCTZ) in their ability to modulate renal tissue oxygenation in hypertensive patients. METHODS: 24 patients were enrolled in this randomized prospective study and 20 completed the protocol. Patients were randomly assigned to receive either aliskiren 150-300 mg/d or HCTZ 12.5 - 25 mg/d for 8 weeks. Renal oxygenation was measured by BOLD-MRI at weeks 0 and 8. BOLD-MRI was also performed before and after an i.v. injection of 20 mg furosemide at week 0 and at week 8. BOLD-MRI data were analyzed by measuring the oxygenation in 12 computed layers of the kidney enabling to asses renal oxygenation according to the depth within the kidney and by the classical method of regions of interest (ROI). RESULTS: The classical ROI analysis of the data showed no difference between the groups at week 8. The analysis of renal oxygenation according to the 12 layers method shows no significant difference between aliskiren and HCTZ at week 8 before administration of furosemide. However, within group analyses show that aliskiren slightly but not significantly increased oxygenation in the cortex and decreased medullary oxygenation whereas HCTZ induced a significant overall decrease in renal tissue oxygenation. With the same method of analysis we observed that the response to furosemide was unchanged in the HCTZ group at week 8 but was characterized by an increase in both cortical and medullary oxygenation in aliskiren-treated patients. Patients responding to aliskiren and HCTZ by a fall in systolic blood pressure of >10 mmHg improved their renal tissue oxygenation when compared to non-responders. CONCLUSION: With the classical method of evaluation using regions no difference were found between aliskiren and HCTZ on renal tissue oxygenation after 8 weeks. In contrast, with our new method that takes into account the entire kidney, within group analyses show that aliskiren slightly increases cortical and medullary renal tissue oxygenation in hypertensive patients whereas HCTZ decreases significantly renal oxygenation at trough.
Resumo:
Renal biopsy is being increasingly proposed as a diagnostic tool to characterize small renal masses (SRM). Indeed, the wide adoption of imaging in the diagnostic workup of many diseases had led to a substantial increased incidence of SRM (diameter ≤4 cm). While modern ultrasound, computed tomography (CT) and magnetic resonance imaging (MRI) techniques have high sensitivity for detecting SRM, none is able to accurately and reliably characterize them in terms of histological features. This is currently of key importance in guiding clinical decision-making in some situations, and in these cases renal biopsy should be considered. In this review, we aim to summarize the technique, diagnostic performance, and predicting factors of nondiagnostic biopsy, as well as the future perspectives.