354 resultados para RAT SKIN


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To elucidate the local formation of angiotensin II (Ang II) in the neurons of sensory dorsal root ganglia (DRG), we studied the expression of angiotensinogen (Ang-N)-, renin-, angiotensin converting enzyme (ACE)- and cathepsin D-mRNA, and the presence of protein renin, Ang II, Substance P and calcitonin gene-related peptide (CGRP) in the rat and human thoracic DRG. Quantitative real time PCR (qRT-PCR) studies revealed that rat DRG expressed substantial amounts of Ang-N- and ACE mRNA, while renin mRNA as well as the protein renin were untraceable. Cathepsin D-mRNA and cathepsin D-protein were detected in the rat DRG indicating the possibility of existence of pathways alternative to renin for Ang I formation. Angiotensin peptides were successfully detected with high performance liquid chromatography and radioimmunoassay in human DRG extracts. In situ hybridization in rat DRG confirmed additionally expression of Ang-N mRNA in the cytoplasm of numerous neurons. Intracellular Ang II staining could be shown in number of neurons and their processes in both the rat and human DRG. Interestingly we observed neuronal processes with angiotensinergic synapses en passant, colocalized with synaptophysin, within the DRG. In the DRG, we also identified by qRT-PCR, expression of Ang II receptor AT(1A) and AT(2)-mRNA while AT(1B)-mRNA was not traceable. In some neurons Substance P and CGRP were found colocalized with Ang II. The intracellular localization and colocalization of Ang II with Substance P and CGRP in the DRG neurons may indicate a participation and function of Ang II in the regulation of nociception. In conclusion, these results suggest that Ang II may be produced locally in the neurons of rat and human DRG and act as a neurotransmitter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: Background Stoma closure has been associated with a high rate of surgical site infection (SSI) and the ideal stoma-site skin closure technique is still debated. The aim of this study was to compare the rate of SSI following primary skin closure (PC) versus a skin-approximating, subcuticular purse-string closure (APS). Methods All consecutive patients undergoing stoma closure between 2002 and 2007 by two surgeons at a single tertiary-care institution were retrospectively assessed. Patients who had a new stoma created at the same site or those without wound closure were excluded. The end point was SSI, determined according to current CDC guidelines, at the stoma closure site and/or the midline laparotomy incision. Results There were 61 patients in the PC group (surgeon A: 58 of 61) and 17 in the APS group (surgeon B: 16 of 17). The two groups were similar in baseline and intraoperative characteristics, except that patients in the PC group were more often diagnosed with benign disease (p = 0.0156) and more often had a stapled anastomosis (p = 0.002). The overall SSI rate was 14 of 78 (18%). All SSIs occurred in the PC group (14 of 61 vs. 0 of 17, p = 0.03). Conclusions Our study suggests that a skin-approximating closure with a subcuticular purse-string of the stoma site leads to less SSI than a primary closure. Randomized studies are needed to confirm our findings and assess additional end points such as healing time, cost, and patient satisfaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a sensitive immunohistochemical technique, the localization of neuropeptide Y (NPY) Y1-receptor (Y1R)-like immunoreactivity (LI) was studied in various peripheral tissues of rat. Wild-type (WT) and Y1R-knockout (KO) mice were also analyzed. Y1R-LI was found in small arteries and arterioles in many tissues, with particularly high levels in the thyroid and parathyroid glands. In the thyroid gland, Y1R-LI was seen in blood vessel walls lacking alpha-smooth muscle actin, i.e., perhaps in endothelial cells of capillaries. Larger arteries lacked detectable Y1R-LI. A distinct Y1R-immunoreactive (IR) reticulum was seen in the WT mouse spleen, but not in Y1R-KO mouse or rat. In the gastrointestinal tract, Y1R-positive neurons were observed in the myenteric plexus, and a few enteroendocrine cells were Y1R-IR. Some cells in islets of Langerhans in the pancreas were Y1R-positive, and double immunostaining showed coexistence with somatostatin in D-cells. In the urogenital tract, Y1R-LI was observed in the collecting tubule cells of the renal papillae and in some epithelial cells of the seminal vesicle. Some chromaffin cells of adrenal medulla were positive for Y1R. The problem of the specificity of the Y1R-LI is evaluated using adsorption tests as well as comparisons among rat, WT mouse, and mouse with deleted Y1R. Our findings support many earlier studies based on other methodologies, showing that Y1Rs on smooth muscle cells of blood vessels mediate NPY-induced vasoconstriction in various organs. In addition, Y1Rs in other cells in parenchymal tissues of several organs suggest nonvascular effects of NPY via the Y1R.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demyelinative potential of the cytokines interleukin-1 alpha (IL-1 alpha), interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) has been investigated in myelinating aggregate brain cell cultures. Treatment of myelinated cultures with these cytokines resulted in a reduction in myelin basic protein (MBP) content. This effect was additively increased by anti-myelin/oligodendrocyte glycoprotein (alpha-MOG) in the presence of complement. Qualitative immunocytochemistry demonstrated that peritoneal macrophages, added to the fetal telencephalon cell suspensions at the start of the culture period, successfully integrated into aggregate cultures. Supplementing the macrophage component of the cultures in this fashion resulted in increased accumulation of MBP. The effect of IFN-gamma on MBP content of cultures was not affected by the presence of macrophages in increased numbers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuropeptide-Y (NPY) is a 36-amino acid peptide known to inhibit glucose-stimulated insulin secretion in various animal models in vitro and in vivo. NPY is thought to be one of the mediators of sympathetic action in the pancreas through nerve endings surrounding the islets, and it has recently been shown to be synthesized within the islets of Langerhans. To elucidate the potential role of NPY in the endocrine pancreas, we studied the expression and regulation of NPY secretion in a rat insulinoma cell line (INS-1). NPY mRNA and peptide are highly expressed and secreted by INS-1 cells. NPY levels were determined by a sensitive and specific two-site amplified enzyme-linked immunosorbent assay. Incubation of INS-1 cells with various glucose concentrations did not modify NPY secretion; however, stimulation of adenylate cyclase by forskolin induced a dose- and time-dependent increase in NPY release in the medium. The glucagon-like peptide-I-(7-36) amide (GLP-1), a known gluco-incretin in humans, induced at low concentration (10(-9) M) a similar expression of NPY mRNA and peptide secretion in INS-1 cells. On the other hand, the inhibition of cAMP accumulation by the alpha 2-adrenergic agonist clonidine decreased NPY secretion. In conclusion, 1) high levels of gene expression and secretion of NPY are found in a rat insulinoma cell line (INS-1). 2) Accumulation of cAMP induced by forskolin or a gluco-incretin (GLP-1) induces a further increase in NPY gene expression and release. 3) NPY secretion is not modulated by low or high glucose concentrations in the medium. 4) Induction of NPY, a known inhibitor of insulin secretion, may represent a novel counterregulatory mechanism of insulin secretion, limiting the stimulatory effect of GLP-1 on insulin secretion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Reactivation of latent tuberculosis (TB) in inflammatory bowel disease (IBD) patients treated with antitumor necrosis factor-alpha medication is a serious problem. Currently, TB screening includes chest x-rays and a tuberculin skin test (TST). The interferon-gamma release assay (IGRA) QuantiFERON-TB Gold In-Tube (QFT-G-IT) shows better specificity for diagnosing TB than the skin test. This study evaluates the two test methods among IBD patients. METHODS: Both TST and IGRA were performed on 212 subjects (114 Crohn's disease, 44 ulcerative colitis, 10 indeterminate colitis, 44 controls). RESULTS: Eighty-one percent of IBD patients were under immunosuppressive therapy; 71% of all subjects were vaccinated with Bacille Calmette Guérin; 18% of IBD patients and 43% of controls tested positive with the skin test (P < 0.0001). Vaccinated controls tested positive more often with the skin test (52%) than did vaccinated IBD patients (23%) (P = 0.011). Significantly fewer immunosuppressed patients tested positive with the skin test than did patients not receiving therapy (P = 0.007); 8% of patients tested positive with the QFT-G-IT test (14/168) compared to 9% (4/44) of controls. Test agreement was significantly higher in the controls (P = 0.044) compared to the IBD group. CONCLUSIONS: Agreement between the two test methods is poor in IBD patients. In contrast to the QFT-G-IT test, the TST is negatively influenced by immunosuppressive medication and vaccination status, and should thus be replaced by the IGRA for TB screening in immunosuppressed patients having IBD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For tissue engineering, several cell types and tissues have been proposed as starting material. Allogenic skin products available for therapeutic usage are mostly developed with cell culture and with foreskin tissue of young individuals. Fetal skin cells offer a valuable solution for effective and safe tissue engineering for wounds due to their rapid growth and simple cell culture. By selecting families of genes that have been reported to be implicated in wound repair and particularly for scarless fetal wound healing including transforming growth factor-beta (TGF-beta) superfamily, extracellular matrix, and nerve/angiogenesis growth factors, we have analyzed differences in their expression between fetal skin and foreskin cells, and the same passages. Of the five TGF-beta superfamily genes analyzed by real-time reverse transcription-polymerase chain reaction, three were found to be significantly different with sixfold up-regulated for TGF-beta2, and 3.8-fold for BMP-6 in fetal cells, whereas GDF-10 was 11.8-fold down-regulated. For nerve growth factors, midkine was 36-fold down-regulated in fetal cells, and pleiotrophin was 4.76-fold up-regulated. We propose that fetal cells present technical and therapeutic advantages compared to foreskin cells for effective cell-based therapy for wound management, and overall differences in gene expression could contribute to the degree of efficiency seen in clinical use with these cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Substance P (SP), an undecapeptide belonging to the tachykinin family, is released during the activation of sensory nerves, and causes vasodilation, edema and pain through activation of tissular Neurokinin 1 receptors. SP proinflammatory effects are terminated by angiotensin converting enzyme (ACE) and neutral endopeptidase (NEP), while the aminopeptidase dipeptidylpeptidase IV (DPPIV) can also play a role. The aim of this randomized, crossover, double-blind study was to assess the cutaneous vasoreactivity (flare and wheal reaction, burning pain sensation) to intradermal injection of ascending doses of SP in six volunteers receiving a single therapeutic dose of the DPPIV inhibitor sitagliptin or a matching placebo. Cutaneous SP challenges produced the expected, dose-dependent flare and wheal response, while eliciting mild to moderate local pain sensation with little dose dependency. However, no differences were shown in the responses observed under sitagliptin compared with placebo, while the study would have been sufficiently powered to detect a clinically relevant increase in sensitivity to SP. The results of this pilot study are in line with proteolytic cleavage of SP by ACE and NEP compensating the blockade of DPPIV to prevent an augmentation of its proinflammatory action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The expression of calmodulin kinase IV (CaMKIV) can be induced by the thyroid hormone T3 in a time- and concentration-dependent manner at a very early stage of brain differentiation using a fetal rat telencephalon primary cell culture system which can grow and differentiate under chemically defined conditions (Krebs et al. (1996) J. Biol. Chem. 271, 11055-11058). After the induction of CaMKIV by T3 we examined the influence of prolonged absence of T3 from the culture medium on the expression of CaMKIV. We could demonstrate that after the T3-dependent induction of CaMKIV, omission of the hormone, even for 8 days, from the medium did not downregulate the expression of CaMKIV indicating that different regulatory mechanisms became important for the expression of the enzyme. We further showed that CaMKIV could be involved in the Ca(2+) -dependent expression of the immediate early gene c-fos, probably via phosphorylation of the transcription factor CREB. Convergence of signal transduction pathways on this transcription factor by using different protein kinases may explain the importance of CREB for the regulation of different cellular processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this work was to develop and optimize a simple and suitable method to detect the potential inhibitory effect of drugs and medicines on alcohol dehydrogenase (ADH) activity in order to evaluate the possible interactions between medicines and alcohol metabolism. Commonly used medicines that are often involved in court litigations related with driving under the influence of alcohol were selected. Alprazolam, flunitrazepam and tramadol were tested as drugs with no known effect on ADH activity. Cimetidine, reported previously as having inhibitory effect on ADH, and 4-methylpyrazole (4-MP), a well known ADH inhibitor, were tested as positive controls. Apart from 4-MP, tramadol was identified as having the higher inhibitory effect with an IC50 of 44.7×10(-3)mM, followed by cimetidine (IC50 of 122.9×10(-3)mM). Alprazolam and flunitrazepam also reduced liver ADH activity but to a smaller extent (inhibition of 11.8±5.0% for alprazolam 1.0mM and 34.5±7.1% for flunitrazepam 0.04mM). Apart from cimetidine, this is the first report describing the inhibitory effect of these drugs on ethanol metabolism. The results also show the suitability of the method to screen for inhibitory effect of drugs on ethanol metabolism helping to identify drugs for which further study is justified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The action of the thyroid hormones on responsive cells in the peripheral nervous system requires the presence of nuclear triiodothyronine receptors (NT3R). These nuclear receptors, including both the alpha and beta subtypes of NT3R, were visualized by immunocytochemistry with the specific 2B3 monoclonal antibody. In the dorsal root ganglia (DRG) of rat embryos, NT3R immunoreactivity was first discretely revealed in a few neurons at embryonic day 14 (E14), then strongly expressed by all neurons at E17 and during the first postnatal week; all DRG neurons continued to possess clear NT3R immunostaining, which faded slightly with age. The peripheral glial cells in the DRG displayed a short-lived NT3R immunoreaction, starting at E17 and disappearing from the satellite and Schwann cells by postnatal days 3 and 7 respectively. In the developing sciatic nerve, Schwann cells also exhibited transient NT3R immunoreactivity restricted to a short period ranging from E17 to postnatal day 10; the NT3R immunostaining of the Schwann cells vanished proximodistally along the sciatic nerve, so that the Schwann cells rapidly became free of detectable NT3R immunostaining. However, after the transection or crushing of an adult sciatic nerve, the NT3R immunoreactivity reappeared in the Schwann cells adjacent to the lesion by 2 days, then along the distal segment in which the axons were degenerating, and finally disappeared by 45 days, when the regenerating axons were allowed to re-occupy the distal segment.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The appearance of immunoreactive alpha-melanotropin (alpha-MSH) and adrenocorticotropin (ACTH) during development was studied in 3 areas of the rat brain--cerebral hemispheres, midbrain and hindbrain--from embryonic day (ED) 13-14 until day 21 postnatally. The alpha-MSH content in vivo was always highest in the midbrain; a peak content at birth was followed by a transient decline and a later, higher plateau from postnatal day 7 onwards. The alpha-MSH content in the cerebral hemispheres rose progressively after birth reaching a peak at day 21. Values in the hindbrain rose at day 3 and changed relatively sue taken at ED 15-16 showed a gradual increase in alpha-MSH content over the 20 days. The alpha-MSH content of hindbrain cultures remained at constant low levels, while no alpha-MSH was detectable in cerebral hemisphere cultures. ACTH appeared in vivo earlier than alpha-MSH and was detectable in embryonic brains at ED 13-14. A transient rise was seen at ED 17-18 and major peaks at birth, day 2 and day 3, in the midbrain, hemispheres and hindbrain, respectively. In vitro, the ACTH content increased in all brain regions during the first 5 days in culture and showed no further change thereafter. Comparisons of the in vivo and in vitro development of alpha-MSH and ACTH demonstrate that (i) these two peptide systems are independent in respect to their localization and time of appearance; (ii) they undergo maturation both in vivo and in vitro; (iii) epigenetic factors, such as interactions with other neurotransmitter systems may modulate the developmental pattern of these two peptides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY The results presented here contribute to a better understanding of the crucial molecular relationships and signalling cues exchanged by several fundamental cell types (epidermal keratinocytes, dermal fibroblasts, immune and endothelial cells) of the skin. Importantly we provide evidence to directly implicate Wnt/ß-catenin signalling as a putative player in different cell types (keratinocytes and neutrophils) in mediation of the cutaneous inflammatory response (Fart A). Finally we highlight the importance of several molecules, specifically expressed in the hair follicle stem cell niche to the morphogenesis and homeostasis of the hair follicle (Part B). PART A Currently the body of work pertaining to Wnt signalling and immune cells largely focuses on Wnt signalling in the development of these cells. The data presented here suggests a novel mechanism in which Wnt signalling appears to modulate immune cell recruitment to the skin. Keratinocytes are major contributors to early inflammatory responses by the release of chemokines which recruit immune cells. The resultant inflammatory response is a dynamic process of sequentially infiltrating immune cells governed by a network of growth factors, chemokines and cytokines. In wild type mice the response is typified by a rapid and substantial infiltration of neutrophils followed at later time points by macrophages and Tcells. The expression of the canonical Wnt pathway activating ligand, Wnt3a, is able to induce a strong neutrophil infiltration in the dermis. This response originates in keratinocytes, as it is abrogated upon keratinocyte-specific ablation of ß-catenin. Notably, this suggests that the crucial cross talk between these resident cells and recruited immune cells is, in part, mediated by Wnt signalling. In corroboration of this role of Wnt-mediated recruitment of neutrophils, expression of the Wnt inhibitory ligand sFRPI during acute inflammation results in a dramatic 'dampening' of immune cell infiltration in particular of neutrophil chemoattraction. Importantly, an intrinsic Wnt signalling pathway is essential for neutrophil chemoattraction in response to inflammatory stimuli. There is a marked reduction of neutrophil infiltration in mice grafted with a ß-catenin deficient bone marrow upon TPA induced cutaneous inflammation. Additionally, neutrophils lacking Wnt/ß-catenin fail to respond to IFNγ, an early inflammatory cue, in vitro. In combination, these data indicate a potent function of Wnt signalling in immune cell recruitment and the modulation of the inflammatory response. PART B Tissue specific stem cells form the cellular base on which tissue homeostasis and repair of adult tissue relies. The maintenance of this stem cell pool is highly dependent on the immediate environment or niche. We have identified three genes, the fibroblast growth factor receptor 1 (FGFR1), serpin protease inhibitor (serpin F1) and the haematopoietic cell phosphatase (Hcph) to be specifically expressed in a small population of stromal cells which are in close contact to bulge stem cells. These specialized stromal cells might represent an essential mesenchymal component of the skin stem cell niche and may regulate stem cell proliferation and differentiation. Multiple FGFR1 isoforms are generated through alternate transcript splicing and are able to interact with both FGFs and cell adhesion molecules. Two predominant forms of the receptor are FGFR1-α and FGFR1-ß. Expression of a dominant negative form of the alpha isoform prevents hair follicle morphogenesis altogether. Given that FGFR1-ß signals principally through the FGF ligands, this data indicates that FGF signalling is dispensable for follicle morphogenesis. Moreover the loss of follicular morphogenesis upon suggests a requirement for signalling via cell adhesion molecule association with the receptor as FGFR1 α has a greater affinity for these molecules. The expression of the second candidate niche gene serpin f1, lead to the complete ablation of hair follicle morphogenesis. The serpin f1 product, pigment-epithelial derived factor (PEDF) has potent anti-angiogenic effects. Immunohistochemical analysis using CD31, a endothelial cell marker, revealed that although these cells are present, they have are disorganised and do not form vessels. Interestingly, endothelial cells have been found to contribute to the neuronal stem cell niche and our results suggest a similar mechanism in the skin. SHP1, the Hcph gene product, is a phosphatase which acts in the haematopoetic system. Motheaten mice carrying spontaneous mutations in the Hcph gene have patchy alopecia in their skin and severe defects in their haematopoietic system. However the haematopoietic rescue of the mouse does not result in normal follicular homeostasis. Additionally, ablation of Hcph in either the dermal or keratinocyte compartments of the skin produces hair follicles with abberant morphologies. This data indicates that although SHP1 is not essential for hair follicle morphogenesis it is required in both epidermal and dermal compartments to maintain follicular morphology. RÉSUMÉ PARTIE A Jusqu'à présent, les travaux dédiés à l'étude de la voie de signalisation Wnt dans le système immunitaire se sont essentiellement concentrés sur son rôle dans le développement des cellules immunitaires. Les données présentées ici suggèrent fortement et de manière nouvelle, l'existence d'un mécanisme par lequel la voie de signalisation Wnt/ß-caténine module le recrutement de cellules immunitaires dans un tissu périphérique, la peau, et ainsi la réponse inflammatoire cutanée. La réponse inflammatoire cutanée est un processus dynamique d'infiltration séquentielle de diverses cellules immunitaires, orchestré par un réseau de facteurs de croissance, chémokines et cytokines. Les kératinocytes sont des contributeurs majeurs à la réponse inflammatoire précoce par la libération de chémokines qui permettent ensuite de recruter les cellules immunitaires. Dans des souris sauvages, la réponse est d'abord caractérisée par une infiltration rapide et substantielle de neutrophiles, suivie par celle des macrophages et des lymphocytes T. L'expression d'un ligand activateur de le voie canonique de signalisation Wnt (après injection infra-dermique de fibroblastes sur-exprimant Wnt-3a) induit une infiltration dermique très marquée de neutrophiles. De plus, la réponse est éliminée en l'absence de ß-caténine spécifiquement dans les kératinocytes, indiquant que ces cellules sont à l'origine de la réponse. De manière remarquable, ceci suggère qu'une signalisation cruciale entre ces cellules résidentes de la peau et les cellules immunitaires recrutées est, au moins en partie, médiée par la voie Wnt. Corroborant ce rôle de la voie Wnt/ß-caténine dans le recrutement des neutrophiles, l'expression d'un ligand inhibiteur de la voie (sFRP1) résulte au cours d'une inflammation aigüe en une réduction spectaculaire de l'infiltration des cellules immunitaires en général, et des neutrophiles en particulier. De manière importante, la voie de signalisation Wnt est intrinsèquement requise pour la chémoattraction des neutrophiles en réponse à un stimulus inflammatoire. En effet, suite à une inflammation cutanée induite par un ester de phorbol (TPA), une réduction notable de l'infiltration des neutrophiles est observée dans des souris préalablement greffées avec de la moelle osseuse constituée de cellules déficientes en ß-caténine. De plus, in vitro, les neutrophiles sans ß-caténine ne répondent pas à une stimulation par l'interféron γ, qui est pourtant un signal inflammatoire établi in vivo. En conclusion, nos données indiquent que la voie de signalisation Wnt/ß-caténine joue une fonction active dans le recrutement des cellules immunitaires vers un organe périphérique, la peau, ainsi que dans la modulation, à plusieurs niveaux, de la réponse inflammatoire cutanée. PARTIE B Les cellules souches tissu-spécifiques forment la base cellulaire sur laquelle repose l'homéostase et la réparation tissulaires chez l'adulte. La maintenance de ce réservoir de cellules souches est hautement dépendante de leur environnement cellulaire immédiat, encore appelé «niche des cellules souches». Dans la peau, ces cellules stromales spécialisées représentent un compartiment mésenchymateux essentiel de la niche des cellules souches en régulant leurs prolifération et différentiation. Nous avons identifié trois gènes, le «récepteur 1 àux facteurs de croissance des fibroblastes » (Fgfr1 ), l' «inhibiteur de protéase à sérine » (serpinf1 ou pedf) et la « phosphatase des cellules hématopoiétiques » (Hcph ou Ptpn6), comme spécifiquement exprimés par une petite population de cellules stromales qui sont étroitement associées aux cellules souches de la peau (localisées au niveau du bombement du follicule pileux). Pour analyser leur fonction dans ce contexte, nous avons utilisé un test de reconstitution complète de peau murine en combinaison à des. transductions géniques basées sur l'utilisation de lentivirus. Ce test repose sur le mélange de deux compartiments cellulaires, épidermique (kératinocytes) et dermique (fibroblastes), greffés sur une zone ouverte de peau du dos d'une souris pour ensemble reconstituer la peau. Des isoformes multiples de FGFR1 sont générées par épissage alternatif de transcrits et sont capables d'interagir à la fois avec les FGFs (facteurs de croissance des fibroblastes) et les molécules d'adhésion cellulaires. Les deux formes prédominantes du récepteur, FGFR1-α et FGFR1-ß, ne différent que par le «domaine ressemblant aux immunoglobulines 1 » (immunoglobulin-like 1 domain), absent de FGFR1-ß. De plus, FGFR1-ß a une affinité plus grande pour les FGFs et plus faible pour les molécules d'adhésion cellulaires telles que la Ncadhérine (connue pour activer FGFR). La sur-expression de l'une ou l'autre des formes n'empêche pas la morphogenèse folliculaire mais conduit à la formation de follicules aberrants. Toutefois, une différence phénotypique majeure est observée lorsqu'une forme «Dominant-Négatif » (DN) est exprimée dans le compartiment dermique. La sur-expression de FGFR1-ß DN conduit en effet à la formation de follicules petits et tronqués, avec des gaines épithéliales et un bulbe élargis ainsi qu'une petite papille dermique. Par contre, l'expression de FGFR1-α DN abolit complètement la morphogenèse folliculaire. Etant donné que la signalisation par FGFR1-ß est principalement dépendante des ligands FGFs, ces données indiquent que la signalisation par ceux-cì est non-nécessaire à la morphogenèse folliculaire. De plus, l'abolition du processus par la sur-expression de FGFR1-a DN suggëre une signalisation nécessaire entre le récepteur FGFR1 et une ou des molécules d'adhésion cellulaire. L'expression de notre second candidat comme gène spécifique de la niche des cellules souches de la peau, serpinf1, prévient la morphogenèse folliculaire. Seules de petites structures ressemblant à des cystes sont observées après reconstitution de la peau. De plus, dans ces transplants, aucune cellule CD34-positive (marqueur des cellules souches) n'est retrouvée associé à ces cystes. Le produit du gène serpin f1, le «facteur dérivé d'épithélium pigmentaire » (PEDF) est un puissant facteur anti-angiogénique. Nous avons donc analysé la vascularisation des transplants par immunohistochirnies utilisant CD31, un marqueur des cellules endothéliales. Nos résultats révèlent que les cellules endothéliales sont bien présentes, mais de manière désorganisée et ne formant pas de vaisseaux. De manière intéressante, les cellules endothéliales contribuent activement à la niche des cellules souches neuronales, et nos résultats suggèrent donc l'existence possible d'un mécanisme similaire dans la peau. SHP1, le produit du gène Hcph, est une phosphatase quì agit dans le système hématopoiétique. Les souris « motheaten »qui portent des mutations spontanées du gène ont une alopécie inégale au niveau de la peau et de sévères troubles du système hématopoiétique. Pour s'assurer que le phénotype observé au niveau de la peau n'est pas une conséquence d'un défaut du système hématopoiétique, nous avons transplanté des souris Hcph -/- avec de la moelle osseuse sauvage afin de restaurer la fonction de SHP 1 dans le système hématopoiétique. Toutefois, le défaut de morphologie folliculaire est maintenu. De plus, l'ablation d'Hcph dans le compartiment dermique ou épidermique d'essais de reconstitution de peau conduit à la production de follicules pileux avec des morphologies aberrantes. Ces données indiquent que SHP1 n'est pas essentiel à la morphogenèse folliculaire mais est toutefois requis à la fois dans les compartiments épidermiques et dermiques pour la maintenance de la forme du follicule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photons participate in many atomic and molecular interactions and processes. Recent biophysical research has discovered an ultraweak radiation in biological tissues. It is now recognized that plants, animal and human cells emit this very weak biophotonic emission which can be readily measured with a sensitive photomultiplier system. UVA laser induced biophotonic emission of cultured cells was used in this report with the intention to detect biophysical changes between young and adult fibroblasts as well as between fibroblasts and keratinocytes. With suspension densities ranging from 1-8x106 cells/ml, it was evident that an increase of the UVA-laser-light induced photon emission intensity could be observed in young as well as adult fibroblastic cells. By the use of this method to determine ultraweak light emission, photons in cell suspensions in low volumes (100 mu l) could be detected, in contrast to previous procedures using quantities up to 10 ml. Moreover, the analysis has been further refined by turning off the photomultiplier system electronically during irradiation leading to the first measurements of induced light emission in the cells after less than 10 mu s instead of more than 100 milliseconds. These significant changes lead to an improvement factor up to 106 in comparison to classical detection procedures. In addition, different skin cells as fibroblasts and keratinocytes stemining from the same donor were measured using this new highly sensitive method in order to find new biophysical insight of light pathways. This is important in view to develop new strategies in biophotonics especially for use in alternative therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accumulating evidence supports a role for brain-derived neurotrophic factor (BDNF) in depression. However, most of these studies have been performed in animal models that have a low face validity with regard to the human disease. Here, we examined the regulation of BDNF expression in the hippocampus and amygdala of rats subjected to the chronic mild stress (CMS) model of depression, a paradigm that induces anhedonia, a core symptom of depression. We found that exposure of rats to the CMS paradigm did not modulate BDNF mRNA expression in the hippocampus and amygdala. In addition, chronic administration of imipramine, which reversed CMS-induced anhedonia, did not alter BDNF mRNA expression in these limbic structures.