641 resultados para Cell Division -- drug effects


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The costs of coping with stressful situations are traded-off against other functions such as immune responses. This trade-off may explain why corticosterone secretion reduces immune reactions. Corticosterone differentially affects various immunity components. However, which component is suppressed varies between studies. It remains unclear whether the trade-off in energy, nutrition, autoimmunity or oxidative stress accounts for differential immunosuppression. In this study, we investigated whether corticosterone differentially affects the constitutive innate and humoral acquired immunity. We used barn owl nestlings, implanting 50% with a corticosterone-releasing pellet and the other 50% with a placebo pellet. To measure the effect on humoral immunity we vaccinated 50% of the corticosterone-nestlings and 50% of the placebo-nestlings with the antigens 'Tetravac' and the other 50% were injected with PBS. To assess the costs of elevated corticosterone, we measured body mass and resistance to oxidative stress. Administration of corticosterone increased corticosterone levels whereas vaccination induced the production of antibodies. Corticosterone reduced the production of antibodies, but it did not significantly affect the constitutive innate immunity. Corticosterone reduced body growth and resistance to oxidative stress. Under stressful conditions barn owl nestlings seem to keep the constitutive innate immunity, whereas elevated corticosterone levels negatively affected inducible immune responses. We found evidence that mounting a humoral immune reaction is not costly in terms of growth, but reduces the resistance to oxidative stress independently of corticosterone administration. We suggest that humoral immunity is suppressed because the risk of immunopathologies may be disproportionately high when mounting an antibody response under stressful situations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the role of the coreceptor CD8 and lipid rafts in cytotoxic T lymphocyte (CTL) activation, we used soluble mono-and multimeric H-2Kd-peptide complexes and cloned S14 CTL specific for a photoreactive derivative of the Plasmodium berghei circumsporozoite (PbCS) peptide 252-260 [PbCS(ABA)]. We report that activation of CTL in suspension requires multimeric Kd-PbCS(ABA) complexes co-engaging TCR and CD8. Using TCR ligand photo-cross-linking, we find that monomeric Kd-PbCS(ABA) complexes promote association of TCR/CD3 with CD8/p56lck. Dimerization of these adducts results in activation of p56lck in lipid rafts, where phosphatases are excluded. Additional cross-linking further increases p56lck kinase activity, induces translocation of TCR/CD3 and other signaling molecules to lipid rafts and intracellular calcium mobilization. These events are prevented by blocking Src kinases or CD8 binding to TCR-associated Kd molecules, indicating that CTL activation is initiated by cross-linking of CD8-associated p56lck. They are also inhibited by methyl-beta-cyclodextrin, which disrupts rafts and by dipalmitoyl phosphatidylethanolamine, which interferes with TCR signaling. Because efficient association of CD8 and p56lck takes place in rafts, both reagents, though in different ways, impair coupling of p56lck to TCR, thereby inhibiting the initial and essential activation of p56lck induced by cross-linking of engaged TCR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

c-Jun N-terminal kinases (SAPK/JNKs) are activated by inflammatory cytokines, and JNK signaling is involved in insulin resistance and beta-cell secretory function and survival. Chronic high glucose concentrations and leptin induce interleukin-1beta (IL-1beta) secretion from pancreatic islets, an event that is possibly causal in promoting beta-cell dysfunction and death. The present study provides evidence that chronically elevated concentrations of leptin and glucose induce beta-cell apoptosis through activation of the JNK pathway in human islets and in insulinoma (INS 832/13) cells. JNK inhibition by the dominant inhibitor JNK-binding domain of IB1/JIP-1 (JNKi) reduced JNK activity and apoptosis induced by leptin and glucose. Exposure of human islets to leptin and high glucose concentrations leads to a decrease of glucose-induced insulin secretion, which was partly restored by JNKi. We detected an interplay between the JNK cascade and the caspase 1/IL-1beta-converting enzyme in human islets. The caspase 1 gene, which contains a potential activating protein-1 binding site, was up-regulated in pancreatic sections and in isolated islets from type 2 diabetic patients. Similarly, cultured human islets exposed to high glucose- and leptin-induced caspase 1 and JNK inhibition prevented this up-regulation. Therefore, JNK inhibition may protect beta-cells from the deleterious effects of high glucose and leptin in diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The estrogen receptor (ER) stimulates transcription of target genes by means of its two transcriptional activation domains, AF-1 in the N-terminal part of the receptor and AF-2 in its ligand-binding domain. AF-2 activity is dependent upon a putative amphipathic alpha-helix between residues 538 and 552 in the mouse ER. Point mutagenesis of conserved hydrophobic residues within this region reduces estrogen-dependent transcriptional activation without affecting hormone and DNA binding significantly. Here we show that these mutations dramatically alter the pharmacology of estrogen antagonists. Both tamoxifen and ICI 164,384 behave as strong agonists in HeLa cells expressing the ER mutants. In contrast to the wild-type ER, the mutant receptors maintain nuclear localization and DNA-binding activity after ICI 164,384 treatment. Structural alterations in AF-2 caused by gene mutations such as those described herein or by estrogen-independent signaling pathways may account for the insensitivity of some breast cancers to tamoxifen treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colostrum feeding and glucocorticoid administration affect glucose metabolism and insulin release in calves. We have tested the hypothesis that dexamethasone as well as colostrum feeding influence insulin-dependent glucose metabolism in neonatal calves using the euglycemic-hyperinsulinemic clamp technique. Newborn calves were fed either colostrum or a milk-based formula (n=14 per group) and in each feeding group, half of the calves were treated with dexamethasone (30 microg/[kg body weight per day]). Preprandial blood samples were taken on days 1, 2, and 4. On day 5, insulin was infused for 3h and plasma glucose concentrations were kept at 5 mmol/L+/-10%. Clamps were combined with [(13)C]-bicarbonate and [6,6-(2)H]-glucose infusions for 5.5h (i.e., from -150 to 180 min, relative to insulin infusion) to determine glucose turnover, glucose appearance rate (Ra), endogenous glucose production (eGP), and gluconeogenesis before and at the end of the clamp. After the clamp liver biopsies were taken to measure mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate carboxylase (PC). Dexamethasone increased plasma glucose, insulin, and glucagon concentrations in the pre-clamp period thus necessitating a reduction in the rate of glucose infusion to maintain euglycemia during the clamp. Glucose turnover and Ra increased during the clamp and were lower at the end of the clamp in dexamethasone-treated calves. Dexamethasone treatment did not affect basal gluconeogenesis or eGP. At the end of the clamp, dexamethasone reduced eGP and PC mRNA levels, whereas mitochondrial PEPCK mRNA levels increased. In conclusion, insulin increased glucose turnover and dexamethasone impaired insulin-dependent glucose metabolism, and this was independent of different feeding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The H(+)-gated acid-sensing ion channels (ASICs) are expressed in dorsal root ganglion (DRG) neurones. Studies with ASIC knockout mice indicated either a pro-nociceptive or a modulatory role of ASICs in pain sensation. We have investigated in freshly isolated rat DRG neurones whether neurones with different ASIC current properties exist, which may explain distinct cellular roles, and we have investigated ASIC regulation in an experimental model of neuropathic pain. Small-diameter DRG neurones expressed three different ASIC current types which were all preferentially expressed in putative nociceptors. Type 1 currents were mediated by ASIC1a homomultimers and characterized by steep pH dependence of current activation in the pH range 6.8-6.0. Type 3 currents were activated in a similar pH range as type 1, while type 2 currents were activated at pH < 6. When activated by acidification to pH 6.8 or 6.5, the probability of inducing action potentials correlated with the ASIC current density. Nerve injury induced differential regulation of ASIC subunit expression and selective changes in ASIC function in DRG neurones, suggesting a complex reorganization of ASICs during the development of neuropathic pain. In summary, we describe a basis for distinct cellular functions of different ASIC types in small-diameter DRG neurones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic growth hormone (GH) hypersecretion in rats leads to increased isometric force without affecting the unloaded shortening velocity of isolated cardiac papillary muscles, despite a marked isomyosin shift toward V3. To determine if alterations occurred at the level of the contractile proteins in rats bearing a GH-secreting tumor (GH rats), we examined the mechanical properties of skinned fibers to eliminate the early steps of the excitation-contraction coupling mechanism. We found that maximal active tension and stiffness at saturating calcium concentrations (pCa 4.5) were markedly higher in GH rats than in control rats (tension, 52.9 +/- 5.2 versus 38.1 +/- 4.6 mN.mm-2, p < 0.05; stiffness, 1,105 +/- 120 versus 685 +/- 88 mN.mm-2.microns-1, p < 0.01), whereas values at low calcium concentrations (pCa 9) were unchanged. In addition, the calcium sensitivity of the contractile proteins was slightly but significantly higher in GH rats than in control rats (delta pCa 0.04, p < 0.001). The crossbridge cycling rate, reflected by the response to quick length changes, was lower in GH rats than in control rats (62.0 +/- 2.6 versus 77.4 +/- 6.6 sec-1, p < 0.05), in good agreement with a decrease in the proportion of alpha-myosin heavy chains in the corresponding papillary muscles (45.5 +/- 2.0% versus 94.6 +/- 2.4%, p < 0.001). The changes in myosin heavy chain protein phenotype were paralleled by similar changes of the corresponding mRNAs, indicating that the latter occurred mainly at a pretranslational level. These results demonstrate that during chronic GH hypersecretion in rats, alterations at the myofibrillar level contribute to the increase in myocardial contractility observed in intact muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macrophages play a central role in the pathogenesis of atherosclerosis by accumulating cholesterol through increased uptake of oxidized low-density lipoproteins by scavenger receptor CD36, leading to foam cell formation. Here we demonstrate the ability of hexarelin, a GH-releasing peptide, to enhance the expression of ATP-binding cassette A1 and G1 transporters and cholesterol efflux in macrophages. These effects were associated with a transcriptional activation of nuclear receptor peroxisome proliferator-activated receptor (PPAR)gamma in response to binding of hexarelin to CD36 and GH secretagogue-receptor 1a, the receptor for ghrelin. The hormone binding domain was not required to mediate PPARgamma activation by hexarelin, and phosphorylation of PPARgamma was increased in THP-1 macrophages treated with hexarelin, suggesting that the response to hexarelin may involve PPARgamma activation function-1 activity. However, the activation of PPARgamma by hexarelin did not lead to an increase in CD36 expression, as opposed to liver X receptor (LXR)alpha, suggesting a differential regulation of PPARgamma-targeted genes in response to hexarelin. Chromatin immunoprecipitation assays showed that, in contrast to a PPARgamma agonist, the occupancy of the CD36 promoter by PPARgamma was not increased in THP-1 macrophages treated with hexarelin, whereas the LXRalpha promoter was strongly occupied by PPARgamma in the same conditions. Treatment of apolipoprotein E-null mice maintained on a lipid-rich diet with hexarelin resulted in a significant reduction in atherosclerotic lesions, concomitant with an enhanced expression of PPARgamma and LXRalpha target genes in peritoneal macrophages. The response was strongly impaired in PPARgamma(+/-) macrophages, indicating that PPARgamma was required to mediate the effect of hexarelin. These findings provide a novel mechanism by which the beneficial regulation of PPARgamma and cholesterol metabolism in macrophages could be regulated by CD36 and ghrelin receptor downstream effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Telmisartan is an angiotensin II receptor blocker with peroxisome proliferator-activated receptor-gamma agonistic properties. Telmisartan prevents weight gain and decreases food intake in models of obesity and in glitazone-treated rodents. This study further investigates the influence of telmisartan and pioglitazone and their association on weight gain and body composition by examining their influence on neuroendocrine mediators involved in food intake. Male C57/Black 6 mice were fed a high-fat diet, weight matched, and randomized in 4 treatment groups: vehicle, pioglitazone, telmisartan, and pioglitazone-telmisartan. Weight gain, food and water intake, body composition, plasma leptin levels, and the hypothalamic expression of neuroendocrine mediators were analyzed. Additional studies were performed with irbesartan and in angiotensin II 1(A) receptor-knockout mice. Telmisartan abolished weight and fat gain in vehicle- and pioglitazone-treated mice while decreasing food intake, the hypothalamic expression of the agouti-related protein, and plasma leptin levels. Modifications in neuropeptide Y and proopiomelanocortin were not consistent with changes in food intake. The effects on weight gain and expression of the agouti-related protein were intermediate with irbesartan. The effects of telmisartan on weight gain were even more pronounced in angiotensin II 1(A) receptor-knockout mice. This study confirms the anorexigenic effects of telmisartan in mice fed a high-fat diet and suggests for the first time a functional role of telmisartan on hypothalamic orexigenic agouti-related protein regulation. These anorexigenic properties abolish both weight gain and body composition modifications in fat-fed and glitazone-treated mice. The anorexigenic properties are independent from the angiotensin II 1(A) receptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three peroxisome proliferator-activated receptors (PPARs) isotypes (PPAR alpha, beta/delta and gamma) belong to the nuclear hormone receptor family. During the last decade, they have been identified as anti-inflammatory transcription factors. Part of this regulation antiinflammatory is mediated through negative interference between PPARs and other nuclear factors such as NFkB, AP-1 and C/EBP, which regulate innate as well as adaptative immunity. In addition, the PPARs control the functions of macrophages, B cells and T cells. In this review, we summarise the pathways through which the PPARs control inflammatory responses. We also discuss the potential utilisation of PPAR specific ligands in the treatment of inflammatory diseases, such as inflammatory bowel diseases, atherosclerosis, Parkinson's and Alzheimer's diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of Escherichia coli with non-lethal doses of heat or benzyl alcohol (BA) causes transient membrane fluidization and permeabilization, and induces the rapid transcription of heat-shock genes in a sigma32-dependent manner. This early response is followed by a rapid adaptation (priming) of the cells to otherwise lethal elevated temperature, in strong correlation with an observed remodeling of the composition and alkyl chain unsaturation of membrane lipids. The acquisition of cellular thermotolerance in BA-primed cells is unrelated to protein denaturation and is not accompanied by the formation of major heat-shock proteins, such as GroEL and DnaK. This suggests that the rapid remodeling of membrane composition is sufficient for the short-term bacterial thermotolerance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations of GPCRs can increase their constitutive (agonist-independent) activity. Some of these mutations have been artificially introduced by site-directed mutagenesis; others occur spontaneously in human diseases. The analysis of constitutively active GPCR mutants has attracted a large interest in the past decade, providing an important contribution to our understanding of the molecular mechanisms underlying receptor function and drug action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activation of the transcription factor NF-kappaB often results in protection against apoptosis. In particular, pro-apoptotic tumor necrosis factor (TNF) signals are blocked by proteins that are induced by NF-kappaB such as TNFR-associated factor 1 (TRAF1). Here we show that TRAF1 is cleaved after Asp-163 when cells are induced to undergo apoptosis by Fas ligand (FasL). The C-terminal cleavage product blocks the induction of NF-kappaB by TNF and therefore functions as a dominant negative (DN) form of TRAF1. Our results suggest that the generation of DN-TRAF1 is part of a pro-apoptotic amplification system to assure rapid cell death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficient priming of adaptive immunity depends on danger signals provided by innate immune pathways. As an example, inflammasome-mediated activation of caspase-1 and IL-1beta is crucial for the development of reactive T cells targeting sensitizers like dinitrofluorobenzene (DNFB). Surprisingly, DNFB and dinitrothiocyanobenzene provide cross-reactive Ags yet drive opposing, sensitizing vs tolerizing, T cell responses. In this study, we show that, in mice, inflammasome-signaling levels can be modulated to turn dinitrothiocyanobenzene into a sensitizer and DNFB into a tolerizer, and that it correlates with the IL-6 and IL-12 secretion levels, affecting Th1, Th17, and regulatory T cell development. Hence, our data provide the first evidence that the inflammasome can define the type of adaptive immune response elicited by an Ag, and hint at new strategies to modulate T cell responses in vivo.