410 resultados para cerebral artery
Resumo:
The goal of this study was to investigate whether the elastic behavior of conduit arteries of humans or rats is altered as a result of concomitant hypertension. Forearm arterial cross-sectional compliance-pressure curves were determined noninvasively by means of a high precision ultrasonic echo-tracking device coupled to a photoplethysmograph (Finapres system) allowing simultaneous arterial diameter and finger blood pressure monitoring. Seventeen newly diagnosed hypertensive patients with a humeral blood pressure of 163/103 +/- 4.4/2.2 mm Hg (mean +/- SEM) and 17 age- and sex-matched normotensive controls with a humeral blood pressure of 121/77 +/- 3.2/1.9 mm Hg were included in the study. Compliance-pressure curves were also established at the carotid artery of 16-week-old anesthetized spontaneously hypertensive rats (n = 14) as well as Wistar-Kyoto normotensive animals (n = 15) using the same echo-tracking device. In these animals, intra-arterial pressure was monitored in the contralateral carotid artery. Mean blood pressures averaged 197 +/- 4 and 140 +/- 3 mm Hg in the hypertensive and normotensive rats, respectively. Despite the considerable differences in blood pressure, the diameter-pressure and cross-sectional compliance-pressure and distensibility-pressure curves were not different when hypertensive patients or animals were compared with their respective controls. These results suggest that the elastic behavior of a medium size muscular artery (radial) in humans and of an elastic artery (carotid) in rats is not necessarily altered by an increase in blood pressure.
Resumo:
BACKGROUND/AIMS: The present report examines a new pig model for progressive induction of high-grade stenosis, for the study of chronic myocardial ischemia and the dynamics of collateral vessel growth. METHODS: Thirty-nine Landrace pigs were instrumented with a novel experimental stent (GVD stent) in the left anterior descending coronary artery. Eight animals underwent transthoracic echocardiography at rest and under low-dose dobutamine. Seven animals were examined by nuclear PET and SPECT analysis. Epi-, mid- and endocardial fibrosis and the numbers of arterial vessels were examined by histology. RESULTS: Functional analysis showed a significant decrease in global left ventricular ejection fraction (24.5 +/- 1.6%) 3 weeks after implantation. There was a trend to increased left ventricular ejection fraction after low-dose dobutamine stress (36.0 +/- 6.6%) and a significant improvement of the impaired regional anterior wall motion. PET and SPECT imaging documented chronic hibernation. Myocardial fibrosis increased significantly in the ischemic area with a gradient from epi- to endocardial. The number of arterial vessels in the ischemic area increased and coronary angiography showed abundant collateral vessels of Rentrop class 1. CONCLUSION: The presented experimental model mimics the clinical situation of chronic myocardial ischemia secondary to 1-vessel coronary disease.
Resumo:
OBJECTIVES: We have sought to develop an automated methodology for the continuous updating of optimal cerebral perfusion pressure (CPPopt) for patients after severe traumatic head injury, using continuous monitoring of cerebrovascular pressure reactivity. We then validated the CPPopt algorithm by determining the association between outcome and the deviation of actual CPP from CPPopt. DESIGN: Retrospective analysis of prospectively collected data. SETTING: Neurosciences critical care unit of a university hospital. PATIENTS: A total of 327 traumatic head-injury patients admitted between 2003 and 2009 with continuous monitoring of arterial blood pressure and intracranial pressure. MEASUREMENTS AND MAIN RESULTS: Arterial blood pressure, intracranial pressure, and CPP were continuously recorded, and pressure reactivity index was calculated online. Outcome was assessed at 6 months. An automated curve fitting method was applied to determine CPP at the minimum value for pressure reactivity index (CPPopt). A time trend of CPPopt was created using a moving 4-hr window, updated every minute. Identification of CPPopt was, on average, feasible during 55% of the whole recording period. Patient outcome correlated with the continuously updated difference between median CPP and CPPopt (chi-square=45, p<.001; outcome dichotomized into fatal and nonfatal). Mortality was associated with relative "hypoperfusion" (CPP<CPPopt), severe disability with "hyperperfusion" (CPP>CPPopt), and favorable outcome was associated with smaller deviations of CPP from the individualized CPPopt. While deviations from global target CPP values of 60 mm Hg and 70 mm Hg were also related to outcome, these relationships were less robust. CONCLUSIONS: Real-time CPPopt could be identified during the recording time of majority of the patients. Patients with a median CPP close to CPPopt were more likely to have a favorable outcome than those in whom median CPP was widely different from CPPopt. Deviations from individualized CPPopt were more predictive of outcome than deviations from a common target CPP. CPP management to optimize cerebrovascular pressure reactivity should be the subject of future clinical trial in severe traumatic head-injury patients.
Resumo:
Purpose: To assess the value of cerebral perfusion CT (PCT) in children with traumatic brain injury in prediciting their consecutive clinical outcome. Materials and methods: Twelve paediatric patients with acute traumatic brain injury underwent cerebral CT coupled with PCT during their admission at the emergency room (ER). PCT maps were reviewed for mean transit time (MTT), regional cerebral blood flow (rCBF) and regional cerebral blood volume (rCBV) abnormalities. PCT results were compared to short- and mid-term clinical outcome. Results: 3 patients with low Glasgow Coma Scale (GCS) (98) and bad clinical outcome showed an increased MTT and decreased rCBV and rCBF. 5 patients with low GCS and good clinical outcome showed an increased MTT without abnormalities of rCBV and rCBF. In patients with GCS 08 and good outcome, PCT maps were normal in 2 cases; transient PCT abnormalities were identified in one case with an embedded fracture of the skull and in one case with an epileptic seizure. Conclusion: Cerebral PCT can identify diffuse abnormalities of cerebral perfusion in children with traumatic brain injury showing a low initial GCS and a bad outcome. PCT can be a valuable tool to predict the severity of the prognosis of these patients as soon as they are evaluated by CT-scan during their admission at the ER.
Resumo:
OBJECT: To determine the single spin-echo T 2 relaxation times of uncoupled and J-coupled metabolites in rat brain in vivo at 14.1 T and to compare these results with those previously obtained at 9.4 T. MATERIALS AND METHODS: Measurements were performed on five rats at 14.1 T using the SPECIAL sequence and TE-specific basis-sets for LCModel analysis. RESULTS AND CONCLUSION: The T 2 of singlets ranged from 98 to 148 ms and T 2 of J-coupled metabolites ranged from 72 ms (glutamate) to 97 ms (myo-inositol). When comparing the T 2s of the metabolites measured at 14.1 T with those previously measured at 9.4 T, a decreasing trend was found (p < 0.0001). We conclude that the modest shortening of T 2 at 14.1 T has a negligible impact on the sensitivity of the (1)H MRS when performed at TE shorter than 10 ms.
Resumo:
Post-lobectomy bronchovascular fistula (BVF) associated with massive hemoptysis is a rare but life-threatening complication. Surgical options include completion pneumonectomy or BVF resection with end-to-end anastomosis of the airways and reconstruction of the pulmonary artery (PA) by interposition of an appropriate substitute. We report PA resection and successful reconstruction by interposition of an autologous reversed superficial femoral vein (SFV) segment for this purpose.
Resumo:
The purpose of this study is to introduce and describe a newly developed index using foot pressure analysis to quantify the degree of equinus gait in children with cerebral palsy before and after injection with botulinum toxin. Data were captured preinjection and 12 weeks postinjection. Ten children aged 2(1/2) to 6(1/2) years took part (5 boys and 5 girls). Three of them had a diagnosis of spastic diplegia and 7 of congenital hemiplegia. In total, 13 limbs were analyzed. After orientation and segmentation of raw pedobarographic data, we determined a dynamic foot pressure index graded 0 to 100 that quantified the relative degree of heel and forefoot contact during stance. These data were correlated (Pearson correlation) with clinical measurements of dorsiflexion at the ankle (on a slow and fast stretch) and video observation (using the Observational Gait Scale). Pedobarograph data were strongly correlated with both the Observational Gait Scale scores (R = 0.79, P < 0.005) and clinical measurements of dorsiflexion on a fast stretch, which is reflective of spasticity (R = 0.70, P < 0.005). We demonstrated the index's sensitivity in detecting changes in spasticity and good correlation with video observations seems to indicate this technique's potential validity. When manipulated and segmented appropriately, and with the development of a simple ordinal index, we found that foot pressure data provided a useful tool in tracking changes in patients with spastic equinus.
Resumo:
OBJECTIVES: Subependymal pseudocysts (SEPC) are cerebral periventricular cysts located on the floor of the lateral ventricle and result from regression of the germinal matrix. They are increasingly diagnosed on neonatal cranial ultrasound. While associated pathologies are reported, information about long-term prognosis is missing, and we aimed to investigate long-term follow-up of these patients. STUDY DESIGN: Newborns diagnosed with SEPC were enrolled for follow-up. Neurodevelopment outcome was assessed at 6, 18 and 46 months of age. RESULTS: 74 newborns were recruited: we found a high rate of antenatal events (63%), premature infants (66% <37 weeks, 31% <32 weeks) and twins (30%). MRI was performed in 31 patients, and cystic periventricular leukomalacia (c-PVL) was primarily falsely diagnosed in 9 of them. Underlying disease was diagnosed in 17 patients, 8 with congenital cytomegalovirus (CMV) infection, 5 with genetic and 4 with metabolic disease. Neurological examination (NE) at birth was normal for patients with SEPCs and no underlying disease, except one. Mean Developmental Quotient and IQ of these patients was 98.2 (±9.6SD; range 77-121), 94.6 (±14.2SD; 71-120) and 99.6 (±12.3SD; 76-120) at 6, 18 and 46 months of age, respectively, with no differences between the subtypes of SEPC. A subset analysis showed no outcome differences between preterm infants with or without SEPC, or between preterm of <32 GA and ≥32 GA. CONCLUSIONS: Neurodevelopment of newborns with SEPC was normal when no underlying disease was present. This study suggests that if NE is normal at birth and congenital CMV infection can be excluded, then no further investigations are needed. Moreover, it is crucial to differentiate SEPC from c-PVL which carries a poor prognosis.
Resumo:
BACKGROUND: Trigeminal neuralgia (TN) secondary to megadolichobasilar artery (MBA) compression is considerably difficult to manage surgically. OBJECTIVE: This study aims to evaluate the safety/efficacy of Gamma Knife surgery (GKS) in this special group of patients. METHODS: Between July 1992 and November 2010, 29 patients with >1 year of follow-up presenting with MBA compression were treated with GKS at Timone University Hospital. Radiosurgery was performed using a Gamma Knife (model B, C or Perfexion). A single 4-mm isocenter was positioned in the cisternal portion of the trigeminal nerve at a median distance of 9.1 mm (range: 6-18.2 mm) from the emergence. RESULTS: The median follow-up period was 46.1 months (range: 12.9-157.9 months). Initially, all patients (100%) were pain free; the average time to complete pain relief was 13.5 days (range: 0-240 days). Their actuarial probability of remaining pain free without medication at 0.5, 1 and 2 years was 93.1, 79.3 and 75.7%, respectively, and remained stable until 13 years after treatment. The actuarial probability of hypoesthesia onset at 6 months was 4.3%; at 1 year it reached 13% and remained stable until 13 years after treatment. CONCLUSIONS: GKS proved to be reasonably safe and effective on a long-term basis as a first- and/or second-line surgical treatment for TN due to MBA compression.
Resumo:
The electrical stimulation of the dorsal columns of the spinal cord exerts a dual analgesic and vasodilatory effect on ischemic tissues. It is increasingly considered a valuable method to treat severe and otherwise intractable coronary and peripheral artery disease. The quality of the results depends from both a strict selection of the patients by vascular specialists and the frequency and quality of the follow-up controls. However the indications, limits, mode of action and results of spinal cord stimulation are still poorly understood. This article, based on a personal experience of 164 implantations for peripheral and coronary artery disease, aims to draw attention to this technique and to provide information on recent and future developments.
Resumo:
The serine protease thrombin plays a role in signalling ischemic neuronal death in the brain. Paradoxically, endogenous neuroprotective mechanisms can be triggered by preconditioning with thrombin (thrombin preconditioning, TPC), leading to tolerance to cerebral ischemia. Here we studied the role of thrombin's endogenous potent inhibitor, protease nexin-1 (PN-1), in ischemia and in tolerance to cerebral ischemia induced by TPC. Cerebral ischemia was modelled in vitro in organotypic hippocampal slice cultures from rats or genetically engineered mice lacking PN-1 or with the reporter gene lacZ knocked into the PN-1 locus PN-1HAPN-1-lacZ/HAPN-1-lacZ (PN-1 KI) exposed to oxygen and glucose deprivation (OGD). We observed increased thrombin enzyme activity in culture homogenates 24 h after OGD. Lack of PN-1 increased neuronal death in the CA1, suggesting that endogenous PN-1 inhibits thrombin-induced neuronal damage after ischemia. OGD enhanced β-galactosidase activity, reflecting PN-1 expression, at one and 24 h, most strikingly in the stratum radiatum, a glial cell layer adjacent to the CA1 layer of ischemia sensitive neurons. TPC, 24 h before OGD, additionally increased PN-1 expression 1 h after OGD, compared to OGD alone. TPC failed to induce tolerance in cultures from PN-1(-/-) mice confirming PN-1 as an important TPC target. PN-1 upregulation after TPC was blocked by the c-Jun N-terminal kinase (JNK) inhibitor, L-JNKI1, known to block TPC. This work suggests that PN-1 is an endogenous neuroprotectant in cerebral ischemia and a potential target for neuroprotection.
Resumo:
BACKGROUND: This study was designed to determine whether the pain pattern in patients with an internal mammary artery (IMA) harvest differs from that in other cardiac operations and whether these patients present specific characteristics with clinical implications. METHODS: One hundred patients with left IMA grafting (IMA group) were compared prospectively with 100 patients who had a heart operation without IMA harvest (non-IMA group). Pain assessment was performed on postoperative days (POD) 1, 2, 3, and 7, and included pain intensity (10-point scale) and pain localization. RESULTS: In the IMA group, pain intensity was higher on POD 2 (4.2 +/- 2.4 versus 3.2 +/- 2.3, p < 0.01), and there were more patients without pain on POD 7 (32 versus 19, p = 0.03). In the IMA group, more patients had left basal thoracic pain throughout the entire study period and had sternal pain on POD 7, whereas more patients in the non-IMA group complained about back pain during the early postoperative period. CONCLUSIONS: The impact of IMA harvest on pain intensity is moderate, but the pain localization pattern of each group exhibits specific features that could help to better target pain management.
Resumo:
PURPOSE OF THE STUDY: This prospective study reports our preliminary results with local anaesthesia (LA) for carotid endarterectomy (CEA). MATERIAL AND METHODS: Twenty CEA in nineteen patients were performed using a three-stage local infiltration technique. CEA were performed through a short Duplex-assisted skin incision (median length: 55 mm) using a retro-jugular approach and polyurethane patch closure (median length: 35 mm). RESULTS: There were 13 men and 6 women with a mean age of 71.2 years. The indications of CEA were asymptomatic lesions in 11 cases, stroke in 7 cases and transient ischaemic attack in 2 cases. The median degree of internal carotid artery stenosis was 90%. One patient (5%) required an intraluminal shunt. There were no peri-operative deaths, stroke or conversion to general anaesthesia (GA). The median length of stay was 3 days. CONCLUSIONS: LA is a good alternative to GA. It can be used after a feasibility study and a short teaching procedure. In our centre, it is a safe and effective procedure associated with low morbidity, high acceptance by patients and a short hospital stay.
Resumo:
Subplate neurons are among the earliest born cells of the neocortex and play a fundamental role in cortical development, in particular in the formation of thalamocortical connections. Subplate abnormalities have been described in several neuropathological disorders including schizophrenia, autism and periventricular eukomalacia (Eastwood and Harrison, Schizophr Res, 79, 2005; McQuillen and Ferriero, Brain Pathol, 15, 2005). We have identified and confirmed a range of specific markers for murine subplate using a microarray based approach and found that different subplate subpopulations are characterized by distinct expression patterns of these genes (Hoerder-Suabedissen et al., Cereb Cortex, 19, 2009). In this current study, we are making use of these markers to investigate neuropathological changes of the subplate after cerebral hypoxia-ischemia (HI) in the neonatal rat. First, we characterized the expression of a number of murine subplate markers in the postnatal rat using immunohistochemistry and in situ hybridization. While several genes (Nurr1, Cplx3, Ctgf and Tmem163) presented very similar expression patterns as in the mouse, others (Ddc, MoxD1 and TRH) were completely absent in the rat cortex. This finding suggests important differences in the subplate populations of these two rodent species. In a neonatal rat model of HI, selective vulnerability of subplate has been suggested using BrdU birthdating methods (McQuillen et al., J Neurosci, 15, 2003). We hypothesized that certain subplate subpopulations could be more susceptible than others and analyzed the above subplate markers in a similar yet slightly milder HI model. Two-day old male rat pups underwent permanent occlusion of the right common carotid artery followed by a period of hypoxia (6% O2, 1.5h or 2h) and were analyzed six days later. Preliminary counts on three subplate subpopulations (Nurr1+, Cplx3+ and Ctgf+ cells, respectively) showed similar reductions in cell numbers for all three groups. In addition, we found that the majority of cases which show changes in the subplate also exhibit lesions in the deep cortical layers VI (identified by FoxP2 expression) and sometimes even layer V (revealed by Er81 immunoreactivity), which questions the selective susceptibility of subplate over other cortical layers under the conditions we used in our model. Supported by MRC, FMO holds a Berrow Scholarship, Lincoln College, Oxford.