320 resultados para Free zone


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Autologous blood transfusion (ABT) efficiently increases sport performance and is the most challenging doping method to detect. Current methods for detecting this practice center on the plasticizer di(2-ethlyhexyl) phthalate (DEHP), which enters the stored blood from blood bags. Quantification of this plasticizer and its metabolites in urine can detect the transfusion of autologous blood stored in these bags. However, DEHP-free blood bags are available on the market, including n-butyryl-tri-(n-hexyl)-citrate (BTHC) blood bags. Athletes may shift to using such bags to avoid the detection of urinary DEHP metabolites. STUDY DESIGN AND METHODS: A clinical randomized double-blinded two-phase study was conducted of healthy male volunteers who underwent ABT using DEHP-containing or BTHC blood bags. All subjects received a saline injection for the control phase and a blood donation followed by ABT 36 days later. Kinetic excretion of five urinary DEHP metabolites was quantified with liquid chromatography coupled with tandem mass spectrometry. RESULTS: Surprisingly, considerable levels of urinary DEHP metabolites were observed up to 1 day after blood transfusion with BTHC blood bags. The long-term metabolites mono-(2-ethyl-5-carboxypentyl) phthalate and mono-(2-carboxymethylhexyl) phthalate were the most sensitive biomarkers to detect ABT with BTHC blood bags. Levels of DEHP were high in BTHC bags (6.6%), the tubing in the transfusion kit (25.2%), and the white blood cell filter (22.3%). CONCLUSIONS: The BTHC bag contained DEHP, despite being labeled DEHP-free. Urinary DEHP metabolite measurement is a cost-effective way to detect ABT in the antidoping field even when BTHC bags are used for blood storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Limited evidence exists to suggest that the ability to invade and escape protozoan host cell bactericidal activity extends to members of the Chlamydiaceae, intracellular pathogens of humans and animals and evolutionary descendants of amoeba-resisting Chlamydia-like organisms. PCR and microscopic analyses of Chlamydophila abortus infections of Acanthamoeba castellani revealed uptake of this chlamydial pathogen but, unlike the well-described inhabitant of A. castellani, Parachlamydia acanthamoebae, Cp. abortus did not appear to propagate and is likely digested by its amoebal host. These data raise doubts about the ability of free-living amoebae to serve as hosts and vectors of pathogenic members of the Chlamydiaceae but reveal opportunities, via comparative genomics, to understand virulence mechanisms used by Chlamydia-like organisms to avoid amoebal digestion.